
Simulink® Real-Time™
I/O Reference

R2018b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ I/O Reference
© COPYRIGHT 2000–2018 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
September 2002 Online only Revised for Version 2.0.1 (Release 13)
September 2003 Online only Revised for Version 2.0.1 (Release 13SPI)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)
September 2017 Online only Revised for Version 6.7 (Release 2017b)
March 2018 Online only Revised for Version 6.8 (Release 2018a)
September 2018 Online only Revised for Version 6.9 (Release 2018b)

Introduction, RS-232

Simulink Real-Time I/O Library
1

I/O Driver Blocks . 1-2
Speedgoat I/O Modules . 1-2
Third-Party Driver Blocks . 1-2
I/O Driver Block Library . 1-3
Memory-Mapped Devices . 1-4
ISA Bus I/O Devices . 1-4
PCI Bus I/O Devices . 1-4
Simulink Real-Time I/O Driver Structures 1-6
Simulink Real-Time Support and SimState 1-7
PWM and FM Driver Block Notes 1-8
Driver Block Documentation . 1-9

Add I/O Blocks to Simulink Model 1-11

Defining I/O Block Parameters . 1-13

Serial Communications Support
2

RS-232 Serial Communication . 2-2
Serial Connections for RS-232 . 2-2

RS-232 Composite Drivers . 2-4
Adding RS-232 Blocks . 2-4

v

Contents

Building and Running the Real-Time Application 2-8
Simulink Real-Time RS-232 Reference 2-9

Serial Communications Support: Blocks
3

Serial Communications Support: Internal Blocks
A

CAN, Encoders, Ethernet, EtherCAT

CAN Utility Blocks
4

Model-Based Ethernet Communications Support
5

Model-Based Ethernet Communications 5-2
What Is Model-Based Ethernet Communications? 5-2
Ethernet Hardware . 5-2
PCI Bus and Slot Numbers . 5-3
MAC Addresses . 5-3
Network Buffer Pointers . 5-4
Filter Type and Filter Address Blocks 5-4
Execution Priority . 5-4
Simulink Real-Time Ethernet Block Library 5-4

vi Contents

Ethernet Blocks
6

Network Buffer Library for Model-Based Ethernet
Communications Support

7
Network Buffer Blocks . 7-2

Network Buffer Library Blocks
8

Model-Based EtherCAT Communications Support
9

EtherCAT Init . 9-2

Modeling EtherCAT Networks . 9-3
Blocks and Tasks . 9-3
Order of Network Events . 9-4

Install TwinCAT 3 . 9-6

Hardware Setup Requirements for TwinCAT 3 9-7

Configure EtherCAT Network with TwinCAT 3 9-8
Scan EtherCAT Network . 9-8
Configure EtherCAT Master Node Data 9-8
Export and Save EtherCAT Configuration with

TwinCAT 3 . 9-10

Install EtherCAT Network for Execution 9-11

vii

Configure EtherCAT Master Node Model 9-12
Configure EtherCAT Init Block 9-13
Configure EtherCAT PDO Receive Blocks 9-14
Configure EtherCAT PDO Transmit Blocks 9-15
Configure EtherCAT Model Configuration Parameters . . 9-16

EtherCAT Distributed Clock Algorithm 9-18
Master Shift Mode . 9-18
Bus Shift Mode . 9-20
Limitations . 9-22

Fixed-Step Size Derivation . 9-24

EtherCAT Protocol Mapping . 9-25

EtherCAT Configurator Component Mapping 9-26

EtherCAT Data Types . 9-27

EtherCAT Init Block DC Error Values 9-28

EtherCAT Error Codes . 9-29

EtherCAT Blocks
10

TCP, UDP

Real-Time TCP Communication Support
11

TCP Transport Protocol . 11-2

viii Contents

Troubleshoot TCP Block Configuration 11-4
What This Issue Means . 11-4
Try This Workaround . 11-4

TCP Blocks
12

Real-Time UDP Communication Support
13

UDP Transport Protocol . 13-2

UDP Data Exchange with Shared Ethernet Board 13-4
Data Transferred . 13-4
Set Up udpsendreceiveA . 13-5
Set Up udpsendreceiveB . 13-8

UDP Communication Setup . 13-11

UDP and Variable-Size Signals . 13-13

Troubleshoot UDP Block Configuration 13-15
What This Issue Means . 13-15
Try This Workaround . 13-15

ix

Real-Time UDP Blocks
14

Parallel Ports, PTP, SAE J1939, Shared Memory

Parallel Ports
15

Using Parallel Ports . 15-2
Introduction . 15-2
Using the Parallel Port as an Interrupt Source 15-3
Using Add-On Parallel Port Boards 15-4

Parallel Port Blocks
16

Precision Time Protocol
17

Precision Time Protocol . 17-2

Synchronize Timestamps Across Data-Gathering
Network . 17-5

Data Acquisition and Data Analysis Example
Description . 17-18

Data Acquisition Application . 17-18
Data Analysis Application . 17-21

Troubleshoot Precision Time Protocol Configuration . 17-27
What This Issue Means . 17-27

x Contents

Try This Workaround . 17-27

Prerequisites, Limitations, and Unsupported
Features . 17-31

Prerequisites . 17-31
Limitations . 17-31
Unsupported Features . 17-32

Precision Time Protocol Blocks
18

SAE J1939
19

SAE J1939 Blocks . 19-2

SAE J1939 Blocks
20

Shared Memory Support
21

Create GE Fanuc Shared Partitions 21-2

Initialize GE Fanuc Shared Nodes 21-4

GE Fanuc Shared Partition Structure 21-5

GE Fanuc Shared Node Initialization Structure 21-7
Board Mode . 21-7
Board Interrupts . 21-8

xi

Board Node ID . 21-10

Create Curtiss-Wright Shared Partitions 21-12

Initialize Curtiss-Wright Shared Nodes 21-14

Curtiss-Wright Shared Partition Structure 21-15
Alignment Examples . 21-19

Curtiss-Wright Shared Node Initialization Structure . . 21-21
Board Mode . 21-21
Board Timeout . 21-23
Board Data Filter . 21-23
Virtual Paging . 21-24
Board Interrupts . 21-24

Video, XCP

Video Image Processing
22

Process Video Images with Simulink Real-Time 22-2

USB Video Display on Development Computer 22-3

USB Video Display on Target Computer 22-4

Serial Camera Configuration . 22-5

xii Contents

Video Blocks
23

XCP Master Mode
24

XCP Master Mode . 24-2

XCP Blocks
25

Speedgoat

Speedgoat Support
26

Speedgoat Target Computers and Support 26-2
Speedgoat I/O Hardware . 26-3
Speedgoat Communication Protocols 26-4

xiii

UEI, Asynchronous Events

Asynchronous Events
27

Asynchronous Event Support . 27-2
Adding an Asynchronous Event 27-2
Asynchronous Interrupt Example 27-4

xiv Contents

Asynchronous Event: Blocks
28

Logitech

Logitech Blocks
29

Utility Drivers, Target Management, Displays and Logging

Utility Blocks
30

Target Management, Display, and Logging Blocks
31

xv

Introduction, RS-232

17

Simulink Real-Time I/O Library

• “I/O Driver Blocks” on page 1-2
• “Add I/O Blocks to Simulink Model” on page 1-11
• “Defining I/O Block Parameters” on page 1-13

1

I/O Driver Blocks
In this section...
“Speedgoat I/O Modules” on page 1-2
“Third-Party Driver Blocks” on page 1-2
“I/O Driver Block Library” on page 1-3
“Memory-Mapped Devices” on page 1-4
“ISA Bus I/O Devices” on page 1-4
“PCI Bus I/O Devices” on page 1-4
“ Simulink Real-Time I/O Driver Structures” on page 1-6
“ Simulink Real-Time Support and SimState” on page 1-7
“PWM and FM Driver Block Notes” on page 1-8
“Driver Block Documentation” on page 1-9

The Simulink Real-Time environment is a solution for prototyping and testing real-time
systems using a desktop computer. To support this solution, the software allows you to
add I/O blocks to your model. The blocks of the Simulink Real-Time library provide a
particular function of an I/O module. By using I/O blocks in your model, you can generate
executable code tuned specifically to your I/O requirements.

You add I/O driver blocks to your Simulink model to connect your model to I/O modules
(I/O boards). These I/O modules then connect to the sensors and actuators in the physical
system.

Speedgoat I/O Modules
Speedgoat real-time target machines are available with various I/O modules. See on page
26-3.

Third-Party Driver Blocks
In addition to the blocks contained in the Simulink Real-Time library, you can also use
third-party driver blocks in your Simulink Real-Time model. The description of these
blocks is beyond the scope of the Simulink Real-Time documentation. See the provider of
the third-party driver blocks for information on those boards and driver blocks.

1 Simulink Real-Time I/O Library

1-2

I/O Driver Block Library
A driver block does not represent an entire board, but an I/O section supported by a
board. Therefore, the Simulink Real-Time library can have more than one block for each
physical board. I/O driver blocks are written as C-code S-functions (noninlined S-
functions). The source code for the C-code S-functions is included with the Simulink Real-
Time software.

Note, if your model contains I/O blocks, take I/O latency values into account for the model
sample time. To find latency values for a board supported by the Simulink Real-Time block
library, consult the vendor data sheet. To find a link to the vendor website, see:

www.mathworks.com/products/simulink-real-time/supported/hardware-
drivers.html.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

The Simulink Real-Time system supports PCI and ISA (PC/104) buses. If the bus type is
not indicated in the driver block number, determine the bus type of the block by
examining the block parameter dialog box. The last parameter is either a PCI slot, for PCI
boards, or a base address, for ISA (PC/104) boards.

You can open the I/O device driver library with the MATLAB® command slrtlib. The
library slrtlib contains sublibraries grouped by the type of I/O function they provide.

This library also contains the following blocks:

• Simulink Real-Time Driver Examples — When you double-click this block, the Demos
tab in the MATLAB Help Navigator opens, displaying the Simulink Real-Time examples
and example groups.

• Help for Simulink Real-Time — When you double-click this block, the Simulink Real-
Time roadmap page is displayed. You can access the Simulink Real-Time
documentation with this block.

Note The Simulink Real-Time documentation describes only the Simulink Real-Time
blocks. It does not describe the actual board. Refer to the board manufacturer
documentation for information about the boards.

When you double-click one of I/O block groups, the sublibrary opens, displaying a list
grouped by manufacturer. Double-clicking one of the manufacturer groups displays the

 I/O Driver Blocks

1-3

https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html
https://www.mathworks.com/products/simulink-real-time/supported/hardware-drivers.html

I/O device driver blocks for the specified I/O functionality (for example, A/D, D/A, Digital
Inputs, and Digital Outputs).

When you double-click one of the blocks, a Block Parameters dialog box opens, allowing
you to enter system-specific parameters. Parameters typically include

• Sample time
• Number of channels
• Voltage range
• PCI slot (PCI boards)
• Base address (ISA/104 boards)

Memory-Mapped Devices
Simulink Real-Time reserves a 112-kB memory space for memory-mapped devices in the
address range:

C0000 - DBFFF

Drivers for some memory-mapped devices, such as the Softing CAN-AC2-104 board,
support an address range higher than the range that Simulink Real-Time supports.
Specify an address range supported by both the device driver and the Simulink Real-Time
software.

ISA Bus I/O Devices
There are two types of ISA boards:

• Jumper addressable ISA cards
• PnP (Plug and Play) ISA cards

The Simulink Real-Time software only supports jumper addressable ISA cards (non-PnP
ISA boards) where you have to set the base address manually.

PCI Bus I/O Devices
The Simulink Real-Time I/O library supports I/O boards with a PCI bus. During the boot
process, the BIOS creates a conflict-free configuration of base addresses and interrupt

1 Simulink Real-Time I/O Library

1-4

lines for the PCI devices in the target system. You do not need to define base address
information in the dialog boxes of the drivers.

PCI device driver blocks have an additional entry in their dialog boxes. This entry is called
PCI Slot (-1 Autodetect) and allows you to use several identical PCI boards within
one target system. This entry uses a default value of -1, which allows the driver to search
the entire PCI bus to find the board. If you specify a single number, X, greater than 0, the
driver uses the board in bus 0, slot X. When more than one board of the same type is
found, you must use a designated slot number and avoid the use of autodetection. For
manually setting the slot number, you use a number greater than or equal to 0. If the
board cannot locate this slot in the target computer, your real-time application will
generate an error message after downloading.

To set PCI Slot (-1 Autodetect) to a value equal to or greater than 0, you must
identify which board you want on the target computer. To identify the board, find the
manufacturer identification number (Vendor ID) and board identification number (Device
ID) of the boards supported by the I/O library. When the target is booted, the BIOS is
executed and the target computer monitor shows parameters for the PCI boards installed
on the target computer. For example:

Bus
Number

Device
Number

Function
Number

Vendor
ID

Device ID Device Class IRQ

0 4 1 8086 7111 IDE
controller

14/15

0 4 2 8086 7112 Serial bus
controller

10

0 11 0 1307 000B Unknown PCI
device

N/A

1 0 0 12D2 0018 Display
controller

11

In this example, the third line indicates the location of the Measurement Computing™
PCI-DIO48 board. This location is known since the Measurement Computing vendor ID is
0x1307 and the device ID is 0xb. In this case, you can see that the Measurement
Computing board is plugged into PCI slot 11 (Device Number). Enter this value in the
dialog box entry in your I/O device driver for each model that uses this I/O device.

 I/O Driver Blocks

1-5

Simulink Real-Time I/O Driver Structures
Properties for Simulink Real-Time I/O drivers are defined using the parameter dialog box
associated with each Simulink block. However, for more advanced drivers, the available
fields defined by text boxes, check boxes, and pull-down lists are inadequate to define the
behavior of the driver. In such cases, you must provide a more textual description to
indicate what the driver has to do at run time. Textual in this context refers to a
programming-language-like syntax and style.

The Simulink Real-Time software currently uses a character vector description contained
in message structures for the conventional RS-232 drivers.

What Is a Message Structure?

A message structure is a MATLAB array with each cell containing one complete message
(command). A message consists of one or more statements.

First Message Second Message Third Message
Message(1).field Message(2).field Message(3).field
Message(1).field Message(2).field Message(3).field
Message(1).field Message(2).field Message(3).field

Syntax of a Message Statement

Each statement in a message has the following format:

Structure_name(index).field_name = <field character vector or value>

The driver defines the field names. Enter them with upper- and lowercase letters as
defined. However, you can specify your own structure name and enter that name into the
driver parameter dialog box.

Creating a Message Structure

You could enter the message structure directly in the edit field of the driver parameter
dialog box. But because the message structure is a large array, direct entry becomes
cumbersome easily.

A better way is to define the message structure as a variable in the MATLAB workspace
and pass the variable name to the driver. For example, to initialize an external A/D module

1 Simulink Real-Time I/O Library

1-6

and acquire a value during each sample interval, create a script file with the following
statements:

Message(1).senddata='InitADConv, Channel %d'
Message(1).inputports=[1]
Message(1).recdata=''
Message(1).outputports=[]

Message(2).senddata='Wait and Read converted Value'
Message(2).inputports=[]
Message(2).recdata='%f'
Message(2).outputports=[1]

This approach is different from other Simulink Real-Time driver blocks:

• The script containing the definition of the message structure has to be executed before
the model is opened.

After creating your Simulink model and message script, set the preload function of the
Simulink model to load the script file the next time you open the model. In the
Command Window, type

set_param(gcs, 'PreLoadFcn', 'script_name')
• When you move or copy the model file to a new folder, you must also move or copy the

script defining the message structure.

During each sample interval, the driver block locates the message structure, interprets
the messages, and executes the command defined by each message.

For detailed information on the fields in an RS-232 message structure, see “Simulink
Real-Time RS-232 Reference” on page 2-9,

Simulink Real-Time Support and SimState
You can save complete model simulation states while simulating, on a development
computer, a Simulink model that contains some Simulink Real-Time blocks. The software
does not support this behavior when executing such a model on the target computer.

For this operation, set the Save complete SimState in final state check box in the
Data Import/Export pane of the Configuration Parameters dialog box. If your model
contains the following blocks, you cannot save complete model simulation states while
simulating on the development computer.

 I/O Driver Blocks

1-7

• ASCII Encode
• ASCII Decode
• Async Buffer Read
• Async Buffer Write
• Baseboard Serial
• Baseboard Serial F
• Bit Packing (Utilities library)
• Bit Unpacking (Utilities library)
• Byte Packing (Utilities library)
• Byte Unpacking (Utilities library)
• Create Ethernet Packet (Ethernet library)
• FIFO bin read
• FIFO ASCII read
• FIFO write
• UDP Receive
• UDP Send

To prevent these messages, clear the Save complete SimState in final state check box
in the Data Import/Export node of the Configuration Parameters dialog box.

PWM and FM Driver Block Notes
In PWM and FM driver blocks, your control over the output frequency and duty cycle is
not precise. Although the base frequency value is exact, the way the base frequency is
specified affects the output frequency and duty cycle.

At the beginning of each sample time, the block reads the current input signal values. It
then computes two unsigned 16-bit integers, n and m, from the signal values and the block
parameters. During the sample time, the block holds the output signal:

1 High for m cycles of the base frequency
2 Low for the next n-m cycles
3 High for the next m cycles
4 . . .

1 Simulink Real-Time I/O Library

1-8

For a base frequency b, this algorithm results in a rectangular output signal of frequency
b/n and duty cycle m/n. Because m and n must be integers, it is not possible to provide a
continuous range of output frequencies and duty cycles with perfect exactness.

For example, assume that you want to configure an FM block with a duty cycle (m/n) of
1/2. The input signal f to this block is a relative frequency that specifies an output
frequency of b × f. However, m and n must be integers. Therefore, you cannot always
find values of m and n (duty cycle m/n = 1/2) such that:

f = b/n

exactly and

n = 2 * m

exactly. You can find an exact match only when the input signal f equals 1/4, 1/6, 1/8,
and so forth. The output frequencies for the intervening input signal f values are
approximate. The errors are smaller as f approaches 0 and larger as f approaches 1.

To achieve the smallest margin of error, specify the largest possible base frequency. The
fact that n and m must be 16-bit integers imposes a lower limit of:

b / (2 16 – 1)

on the frequencies that can be generated using a given base frequency.

Driver Block Documentation
The typical Simulink Real-Time block documentation briefly describes the supported
board, then describes the parameters for each of the blocks that support the board.
Included in the documentation for each board is a board characteristics table. Board
characteristics tables can include the following information:

 I/O Driver Blocks

1-9

Characteristic Specifies...
Board name Name of the board supported by the blocks. For example,

Speedgoat IO333.
Manufacturer Manufacturer of the board. For example, Speedgoat.
Bus type Bus that is used by the board. For example, PCI or PC/104.
Access method Whether the board is memory mapped or I/O mapped.
Multiple block
instance support

Whether you can use multiple blocks for the same function on the
same board. For example, different blocks for different channels of
an A/D device.

Multiple board
support

Whether you can use multiple boards of the same type in one real-
time application.

1 Simulink Real-Time I/O Library

1-10

Add I/O Blocks to Simulink Model
You can transform a Simulink model to a Simulink Real-Time model that accesses I/O
drivers by using the Simulink Real-Time block library or by using the Simulink Real-Time:
Speedgoat I/O Driver Library. In the Simulink Real-Time block library, the highest
hierarchical level in the library lists I/O function groups. The second level lists board
manufacturer groups. The manufacturer groups contain the driver blocks for specific
boards.

This example uses the Simulink model ex_slrt_osc to show how to replace Simulink
blocks with Simulink Real-Time I/O blocks (see
open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_osc')))).

1 To browse the Simulink Real-Time block library, open the Library: slrtlib window. In
the Command Window, type:

slrtlib
2 To browse the Simulink Real-Time: Speedgoat I/O Driver Library, open the Library:

speedgoatlib window. In the Command Window, type

speedgoatlib
3 In the Simulink Editor, type:

ex_slrt_osc

The Simulink block diagram opens for the model ex_slrt_osc.

4 Open the Simulink Library Browser. Select Simulink Real-Time: Speedgoat I/O
Driver Library > IO101. Drag each of these blocks to the Simulink block diagram:
Speedgoat IO101 Analog input block, Speedgoat IO101 Analog output block, and
Speedgoat IO101 Setup.

 Add I/O Blocks to Simulink Model

1-11

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_osc')))

The Simulink editor adds the new I/O blocks to your model.
5 Remove the Signal Generator block and add the Speedgoat IO101 Analog input block

in its place. Remove the Scope block and add the Speedgoat IO101 Analog output
block in its place.

6 Save the model with a new name, such as ex_slrt_iob_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc',
'examples', 'ex_slrt_iob_osc')))):

You cannot run this model unless the required I/O board is installed in your target
computer. However, you can substitute driver blocks for another I/O board that is
installed in the target computer.

Your next task is to define the I/O block parameters. See “Defining I/O Block Parameters”
on page 1-13.

1 Simulink Real-Time I/O Library

1-12

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_iob_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_iob_osc')))

Defining I/O Block Parameters
The I/O block parameters define values for your physical I/O boards. For example, I/O
block parameters include channel numbers for multichannel boards, input and output
voltage ranges, and sample time.

This procedure uses the Simulink model ex_slrt_osc
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_slrt_osc')))). It assumes that you have added an analog input block, an analog
output block, and the corresponding setup block to your model. To add an I/O block, see
“Add I/O Blocks to Simulink Model” on page 1-11.

1 In the Simulink Editor, double-click the input block labeled Speedgoat IO101
Analog Input.

The dialog box for the A/D converter opens.
2 Fill in the dialog box. For example, enter the sample time you entered for the fixed

step size in the Solver pane of the Simulation > Model Configuration
Parameters dialog box.

 Defining I/O Block Parameters

1-13

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_osc')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_slrt_osc')))

3 In the Simulink Editor, double-click the output block labeled Speedgoat IO101
Analog Output.

The dialog box for the D/A converter opens.
4 Fill in the dialog box. For example, enter the same sample time you entered for the

fixed step size in the Solver pane of the Simulation > Model Configuration
Parameters dialog box.

1 Simulink Real-Time I/O Library

1-14

5 In the Simulink Editor, double-click the output block labeled Speedgoat IO101
Setup.

The dialog box for the converter setup opens.
6 Fill in the dialog box. For example, enter the PCI slot for this PCI-bus board.

 Defining I/O Block Parameters

1-15

If you change the target object property SampleTime, the sample times you entered in
both of the I/O blocks are set to the new value. The step size you entered in the
Configuration Parameters dialog box remains unchanged.

1 Simulink Real-Time I/O Library

1-16

Serial Communications Support

• “RS-232 Serial Communication” on page 2-2
• “RS-232 Composite Drivers” on page 2-4

2

RS-232 Serial Communication
The Simulink Real-Time software supports RS-232 serial communication by using the
serial ports on the target computer mainboard as the RS-232 I/O devices. You can initiate
RS-232 communication with these ports and the accompanying Simulink Real-Time
drivers.

The Simulink Real-Time block library supplies composite drivers to support RS-232
communication (see “RS-232 Composite Drivers” on page 2-4). The composite drivers
support RS-232 communication in asynchronous binary mode. They provide a simple
ASCII encode/decode for the send and receive RS-232 blocks.

These drivers are described as composite because the library represents each functional
piece of the driver as a Simulink block. They are constructed with blocks from the RS-232
internal library. The internal blocks are composite blocks for the Mainboard Baseboard
series.

Do not use the RS-232 internal blocks directly. They are controlled from the mask
parameters dialog box for the subsystem in which they are used.

Serial Connections for RS-232
The Simulink Real-Time software supports serial communication with the COM1 and
COM2 ports on the target computer.

Your real-time applications can use these RS-232 ports as I/O devices. With the typical
DTE/DCE configuration of the RS-232 device, the target computer is connected to the
device with a null modem cable.

2 Serial Communications Support

2-2

See Also
ASCII Decode | ASCII Decode V2 | ASCII Encode | FIFO Read | FIFO Read Binary | FIFO
Read HDRS | FIFO Write | Modem Control | Modem Status | RS-232 Send/Receive |
RS-232 Send/Receive FIFO | RS232 State

 See Also

2-3

RS-232 Composite Drivers
This topic describes the components that make up the RS-232 composite drivers, and how
you can create a model using these drivers. These drivers perform RS-232 asynchronous
communications.

The Simulink Real-Time software provides composite drivers that support the target
computer (main board) serial ports.

These drivers distribute the functionality of the device across several subsystems and
blocks. For most RS-232 requirements, you can use these RS-232 drivers as they are
implemented. However, if you must customize the Simulink Real-Time RS-232 drivers, the
composite nature of the drivers enables you to do so.

Adding RS-232 Blocks
You add RS-232 subsystem blocks to your Simulink model when you want to use the serial
ports on the target computer for serial I/O.

After you create a Simulink model, you can add Simulink Real-Time driver blocks and
configure those blocks. The following procedure describes how to use the serial ports on
the target computer for I/O with the composite drivers.

Before you start, decide what COM port combinations you want to use. The example has
you configure the Baseboard Send/Receive block. To configure this block, first select
serial port pairs. This parameter specifies the ports for which you are defining transmit
and receive. You have a choice of the following:

• Com1/none
• Com2/none
• Com1/Com3
• Com2/Com4
• none/Com3
• none/Com4
• Custom

If you select either the Com1/Com3 or Com2/Com4 pair, check that the port pair shares an
interrupt. If the port pair does not share an interrupt, you cannot use the two ports as a
pair.

2 Serial Communications Support

2-4

Alternatively, you can define a Custom port pair. A Custom port pair is one that does not
match the existing combinations of port pairs. When you select Custom, the dialog box
allows you to configure your own port pair. For example, you can set the IRQ and two
addresses for the port pair. If one of the ports is not used, set that address to 0.

Normally, the ports are set to the following:

• COM1 — 0x3F8, IRQ 4
• COM2 — 0x2F8, IRQ 3
• COM3 — 0x3E8 (if present), IRQ 4
• COM4 — 0x2E8 (if present), IRQ 3

In a Custom port pair, either set one or both ports of the pair to addresses other than
these conventions, or assign a different IRQ value. Some boards allow you to set the IRQ
numbers independently.

If you select the port pairs Com1/Com3 or Com2/Com4, you must include one Send/
Receive subsystem block in the model. If you use COM1 and COM2, or COM1 and a
custom port pair, you must include two Send/Receive blocks in the model.

The following example shows two models, one that uses a standard Com1/Com3 port pair,
and one that uses custom port pairs:

1 In the Command Window, type

slrtlib

The Simulink Real-Time driver block library opens.
2 Double-click the RS-232 group block.

A window with blocks for RS-232 composite drivers opens.

Alternatively, you can access the Simulink Real-Time block library from the Simulink
Library Browser. In the Simulink Editor, and from the View menu, click Show
Library Browser. In the left pane, double-click Simulink Real-Time, and then click
RS232.

3 Drag an ASCII Encode block to your Simulink model. This block encodes input for the
RS-232 Send Receive block.

4 Configure this block.

 RS-232 Composite Drivers

2-5

5 Drag an ASCII Decode block to your Simulink model. This block decodes output from
the RS-232 Send Receive block.

6 Configure this block.
7 Double-click the Mainboard group block.
8 Depending on your port pair configuration, drag one or two Baseboard RS-232 Send/

Receive blocks to your Simulink model.
9 Double-click the Baseboard RS-232 Send/Receive block.
10 Configure this block. Note the following Parameter group values:

• When you select Board Setup, make sure that the Configuration value is
consistent with your RS-232 serial port configuration.

• When you select Receive Setup, for each channel, set the value of the Receive
Sample Time parameter to a sample time value faster than the data being sent.
Do not leave this value at -1. Set this parameter for all channels, including
channels that you are not using; otherwise, you receive an error when generating
code for the real-time application.

11 Add a Pulse Generator block and a target Scope block.
12 Configure the Pulse Generator block so that its Pulse type is Sample based.

The dialog box changes to display a Sample time parameter. Enter a Sample time
that is slower than the one you set for Receive Setup.

13 From the Simulink Library Browser, select Sinks. Depending on your configuration,
drag one or more Terminator blocks to your model. To suppress unused port
messages, connect this block to the unused RCV1 port.

From the Simulink Library Browser, select Sources. Depending on your
configuration, drag the Ground block to your model. To suppress unused port
messages, connect this block to the unused XMT3 port.

Your model can use one block or two.

The single-block model uses the Com1/Com3 port pair:

2 Serial Communications Support

2-6

The two-block model uses two sets of Custom port pairs:

 RS-232 Composite Drivers

2-7

14 Double-click a Baseboard RS232 Send Receive block. To configure the ports on the
target computer for this board, enter values.

Note This dialog box changes depending on the Parameter group selection.

For example, if the Parameter group is Board Setup and the target computer port
is connected to COM1/COM3, your Send Receive block dialog box looks like this
figure.

For more information on entering the block parameters, see RS-232 Send/Receive.
15 Click OK. The Send Receive block dialog box closes.

Your next task is to build and run the real-time application.

Building and Running the Real-Time Application
The Simulink Real-Time software and Simulink Coder™ create C code from your Simulink
model. You can then use a C compiler to create executable code that runs on the target
computer. This topic assumes that you know how to configure your model to create a real-
time application. See “Build and Download Real-Time Application”.

2 Serial Communications Support

2-8

After you have added the RS-232 blocks for the main board to your Simulink model and
configured your model, you can build your real-time application.

1 In the Simulink Editor, and from the Code menu, click C/C++ Code > Build Model.
2 In the Command Window, type

start(tg)

Simulink Real-Time RS-232 Reference
• “Using the FIFO Read Blocks” on page 2-9
• “Signal Data Types” on page 2-10
• “Handling Zero Length Messages” on page 2-11
• “Controlling When You Send a Message” on page 2-12

The Simulink Real-Time software supports RS-232 communication with driver blocks in
your Simulink model.

Using the FIFO Read Blocks

There are three kinds of FIFO Read blocks: FIFO Read, FIFO Read HDRS, and FIFO Read
Binary. To develop your model, use the following guidelines:

• Simple data streams — Use the FIFO Read block to read simple data streams. An
example of a simple data stream is one that has numbers separated by spaces and
ends with a new-line character. The FIFO Read block is a simple block that can easily
extract these numbers.

• More complicated data streams — Use the FIFO Read HDRS and FIFO Read Binary
blocks for more complicated data streams. A more complicated data stream can be
one that contains headers, messages of varying lengths, or messages without specific
terminators. A message header consists of one or more character identifiers at the
beginning of a message that specify what data follows. ASCII messages normally have
a variable length and a terminator. Typically, the messages of a particular device use
the same predefined terminator. Binary messages are normally of fixed length without
a specific terminator.

The FIFO Read HDRS and FIFO Read Binary blocks are also useful to work with
devices that can send different messages at different times.

 RS-232 Composite Drivers

2-9

The three FIFO read block types need their input to be of type serialfifoptr, which is
output from F type Send Receive subsystems.

The following are examples of when you can use the FIFO Read block.

• For an instrument that sends a character vector like this:

<number> <number> ... <CR><LF>

use the simple FIFO Read block to read the message. Configure the FIFO Read block
Delimiter parameter for a line feed (value of 10). Connect the output to an ASCII
Decode block with a format that separates the numbers and feeds them to the output
ports.

• For an instrument that can send one of several different messages, each beginning
with a different fixed character vector, use the FIFO Read HDRS block. For example, a
digital multimeter connected through an RS-232 port sends a voltage reading and an
amp reading with messages of the following format:

volts <number> <CR><LF>
amps <number> <CR><LF>

Configure the FIFO Read HDRS block Header parameter for the volts and amps
headers, in a cell array: {'volts', 'amps'}. Also configure the Terminating
string parameter for carriage return (13) and line feed (10): [13 10].

Connect the output to multiple ASCII Decode blocks, one for each header and
message. See the xpcserialasciitest and xpcserialasciisplit models in
xpcdemos for examples of how to use this block in a model.

• For an instrument that sends a binary message, you typically know the length of each
full message, including the header. Configure the FIFO Read Binary block Header
parameter for the headers of the message, in a cell array, and the Message Lengths
parameter for the message lengths. See the xpcserialbinarytest and
xpcserialbinarysplit models in xpcdemos for further examples of how to use this
block in a model.

Signal Data Types

Signals between blocks in composite drivers can be one of several basic data types, 8-bit,
16-bit, and 32-bit. These types are structures.

The 8-bit data types are NULL-terminated character vectors that are represented as
Simulink vectors. The width is the maximum number of characters that can be stored. In

2 Serial Communications Support

2-10

the following figure, M is the actual set of stored characters and N is the maximum
number of characters that can be stored. This figure illustrates 8-bit int NULL-
terminated and 8–bit uint NULL-terminated data types.

This character vector has 11 characters terminated with a NULL byte (0). This data type
cannot contain a NULL byte as part of the real data.

The 16-bit and 32-bit data types use the first element of the vector as a count of the valid
data. In the following figure of a 16-bit data type, C is the count of the valid data, N is the
width of the vector. This figure illustrates count + 16-bit int and count + 16-bit uint
data types. It also applies to count + 32-bit int and count + 32-bit uint data types.

These serial blocks interpret each entry in the vector as a single character. The low-level
Send block writes the low-order byte of each entry to the UART. The 16-bit and 32-bit data
types allow the embedding of 8-bit data values, including 0. The 8-bit data type is most
useful with the ASCII Encode and Decode blocks. The 16-bit and 32-bit data types are
most useful for binary data streams.

Handling Zero Length Messages

Usually, you configure a FIFO read block of your model serial I/O to execute faster than
the model receives data. Doing so prevents the receive FIFO buffer from overflowing.
However, you must also configure your model to deal with the possibility that a FIFO read
block does not have a message on its output.

 RS-232 Composite Drivers

2-11

Receive FIFOs can have too few characters for a FIFO read operation. A model that
receives serial I/O can have a FIFO read block that executes in this situation. This
condition causes a FIFO read block to perform one of the following, depending on how
you configure the behavior:

• Return the last message it received
• Return a zero length message

The Simulink Real-Time library of composite serial drivers has three FIFO read blocks:
FIFO Read HDRS, FIFO Read Binary, and FIFO Read. For the FIFO Read HDRS or FIFO
Read Binary blocks, you configure this behavior with the Output behavior parameter.
The FIFO Read block returns either a new message or a zero length message.

To execute model code only if a new message arrives, check the first element of the
returned vector, depending on the character vector data type:

• In the 8-bit data type, the returned character vector is NULL-terminated. Therefore, if
the first element is 0, the character vector has zero length and the FIFO read did not
detect a new message.

• In the 16-bit and 32-bit data types, the first element is the number of characters in the
character vector. This value is 0 if the FIFO read did not detect a new message.

If the message has nonzero length, enable a subsystem to process the new character
vector; otherwise, do not process it.

Controlling When You Send a Message

You can use the structure of both serial data types (“Signal Data Types” on page 2-10) to
control when a message is sent. In both cases, a 0 in the first position indicates an empty
character vector.

• 8-bit data types — A value of 0 in the first position is the NULL terminator for the
character vector.

• 16-bit and 32-bit data types — The first position is the number of characters that
follow.

If you connect an empty character vector to the XMT port on one of the send/receive
subsystems, no characters are pushed onto the transmit FIFO. You can get this empty
character vector by using one of the following:

• To send a specific character vector occasionally, use the Product block to multiply the
entire character vector by either 0 or 1. In this case, the 0 or 1 value becomes a

2 Serial Communications Support

2-12

transmit enable. To optimize this operation, use a Demux block to extract the first
element. Multiply just that element by 0 or 1, then use the Mux block to combine it
again.

• Use a Manual Switch, Multiport Switch, or Switch block. Configure the blocks for two
ports to choose between different messages, with one of the choices a vector of 0
values. The Switch block only chooses between vectors of the same width. However,
because the character vector length does not use the whole vector, you can pad your
data to the same width with 0 values.

See Also
ASCII Decode | ASCII Decode V2 | ASCII Encode | FIFO Read | FIFO Read Binary | FIFO
Read HDRS | FIFO Write | Modem Control | Modem Status | RS-232 Send/Receive |
RS-232 Send/Receive FIFO | RS232 State

 See Also

2-13

Serial Communications Support:
Blocks

3

ASCII Encode
Convert Simulink values into uint8 character vector
Library: Simulink Real-Time / RS232

Description
Generates a uint8 output vector that contains a NULL-terminated character vector
based on a printf like format string. The data comes from the input ports.

Ports
Input
1 — Numbered ports that receive values to encode
numeric

Values that the block encodes as a null-terminated character vector.
Data Types: double | int8 | uint8 | int16 | uint16 | int32 | uint32

Output
D — Null-terminated character vector
character vector

Generated uint8 output vector that contains a NULL-terminated character vector.

Parameters
Format string — Format specifiers for converting values to ASCII
%d\r (default) | %c | %i | %o | %u | %x | %e | %f | %g

3 Serial Communications Support: Blocks

3-2

Enter a printf like format string. For each format specifier such as %d, the block
replaces the format specifier by the converted value in the corresponding input variable.
The format specifiers follow the normal description for printf.

Programmatic Use
Block Parameter: format

Number of variables — Number of block inputs
1 (default) | integer

The value on each port is inserted into the output character vector with the format
specified in Format string.

Programmatic Use
Block Parameter: nvars

Max output string length — Maximum length of converted character vector, in
bytes
128 (default) | integer

The block allocates enough memory to support this length for the output port. When
specifying this length, include the NULL termination on the character vector.

If the converted character vector exceeds this length, the block returns an error and does
not write that character vector to the output port.

Programmatic Use
Block Parameter: maxlength

Variable types — Simulink data types allowed for input ports
{'double'} (default) | {'int8'} | {'uint8'} | {'int16} | {'uint16'} | {'int32'}
| {'uint32'}

A cell vector with the same number of elements as specified in Number of variables can
specify a different data type for each input port. A single element is replicated. For
example:

nvars=3

{ } — The three inputs are doubles.

{'uint8'} — The three inputs are uint8.

 ASCII Encode

3-3

{'uint16', 'double', 'uint8'} — The first input is a uint16, the second input is a
double, and the third input is a uint8.

Programmatic Use
Block Parameter: vartypes

See Also
ASCII Decode

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-4

ASCII Decode
Parse ASCII character vector into Simulink values
Library: Simulink Real-Time / RS232

Description
Parses an input character vector according to a format specifier similar to scanf and
makes converted values available to the real-time application.

Ports

Input
D — Input vector to parse
character vector

The input vector can be either 8-bit or 16-bit and signed or unsigned. If the data format is
16-bit, the block ignores the upper 8 bits of each entry.
Data Types: int8 | uint8 | int16 | uint16

Output
1 — Numbered ports that send Simulink values
numeric

Output ports corresponding to items in Format string.

Dependency

Number of variables determines the number of output ports.
Data Types: double | int8 | uint8 | int16 | uint16 | int32 | uint32

 ASCII Decode

3-5

Parameters
Format string — Format specifier for parsing input vector
%d\r (default) | %c | %i | %o | %u | %x | %e | %f | %g

Enter a scanf like format string. Each format specifier such as %d must match a
corresponding part of the input vector. Literal strings in the format must match the first
character plus the number of characters. The format specifiers follow the normal
description for scanf.

An example format string is:

'alpha %d bravo %f\n'

Programmatic Use
Block Parameter: format

Number of variables — Number of output ports for this block
1 (default) | integer

Enter the number of output ports for this block. For example,

If Format string has the value of %xmore text%x and the input vector for the block has
cdmabcdefgh90, you must specify the value of the Number of variables parameter as
2.

The first variable is assigned the value 0xcd. Next, the character vector mabcdefgh is
considered a match to more text because

• The first character for both character vectors is m.
• Both character vectors have the same number of characters.

The second variable is then assigned the value 0x90. The character vector mabcdefgh
does not have to match exactly the value of Format string. This behavior is different
from the behavior for scanf, which requires an exact match.

Programmatic Use
Block Parameter: nvars

Variable types — Simulink data types allowed for output ports
{'double'} (default) | {'int8'} | {'uint8'} | {'int16} | {'uint16'} | {'int32'}
| {'uint32'}

3 Serial Communications Support: Blocks

3-6

A cell vector with the same number of elements as specified in Number of variables can
specify a different data type for each output port. A single element is replicated. For
example:

nvars=3

{ } — The three outputs are doubles.

{'uint8'} — The three outputs are uint8.

{'uint16', 'double', 'uint8'} — The first output is a uint16, the second output
is a double, and the third output is a uint8.

Programmatic Use
Block Parameter: varids

See Also
ASCII Encode

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

 ASCII Decode

3-7

ASCII Decode V2
Parse ASCII character vector into Simulink values
Library: Simulink Real-Time / RS232

Description
The ASCII Decode block parses an input vector produced by one of the following:

• Serial port Receive block
• Serial port FIFO Read block
• ASCII Encode block

It makes the converted values available to a real-time application. It assumes that the
input vector was prepared using an output format specifier similar to printf and uses an
input format specifier similar to scanf.

This block generates inline code for the target computer. You cannot use it for Simulink
simulation.

Ports

Input
Data — Input vector to parse
character vector

The input vector can be either 8-bit or 16-bit and signed or unsigned. If the data format is
16-bit, the block ignores the upper 8 bits of each entry.
Data Types: int8 | uint8 | int16 | uint16

3 Serial Communications Support: Blocks

3-8

Output
cnt — Number of format specifiers satisfied by input
integer

cnt receives the number of format specifiers satisfied by the input character vector.

Value — Inlined ports that send Simulink values
numeric

Output ports corresponding to items in Format.

This block generates inline code for the target computer. You cannot use it for Simulink
simulation.
Data Types: single | double | int8 | uint8 | uint16 | int16 | int32 | uint32

Parameters
Format — Format specifier for parsing input vector
'%f\n' (default) | %c | %d | %i | %o | %u | %x | %e | %g

Enter a scanf like format string. Each format specifier such as %d must match a
corresponding part of the input vector. Literal strings in the format must match the
characters in the input vector. The format specifiers follow the normal description for
scanf. They must be enclosed in single quotes. Failure to include these quotes causes
simulation failures.

An example format string is:

'alpha %d bravo %f\n'

In this example, assume that the data from the FIFO read is 'alpha 5'. In this case, cnt
is 1 and the second output is unchanged from the last time both were found in a
character vector. If the model expects 2 values, and cnt is less than 2, the model detects
an error in the data.

Programmatic Use
Block Parameter: format

 ASCII Decode V2

3-9

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-10

FIFO Read
Read simple data streams
Library: Simulink Real-Time / RS232

Description
The FIFO Read block is the read side of a FIFO read/write pair. It is used to parse simple
data streams. The block functions in two modes, set using the Read to delimiter check
box.

• If you select the Read to delimiter check box, the block only reads elements if the
specified delimiter has been written to the FIFO Write block. If the delimiter is found,
the block returns elements up to and including the delimiter in the output vector. If
the delimiter is not found, the block returns a zero length vector, as determined by the
data type. (If you have a zero length vector, you can have your model perform a
particular operation, or ignore the case.)

• If you clear the Read to delimiter check box, the block returns elements between
Minimum read size and the smaller of the number of elements currently in the FIFO
and Maximum read size.

You usually select the Read to delimiter check box when performing ASCII reads and
clear it when performing binary reads.

The following are some examples of how you can set up the FIFO Read block:

• Transmit side of the interrupt service routine — If the interrupt reason is not an
empty hardware FIFO on the UART, the maximum input port receives a value of 0. If
the hardware FIFO is empty, it receives the size of the hardware FIFO. The minimum
input port receives the constant value of 1.

• Receive side of the interrupt service routine — The typical case with ASCII data
has the minimum and maximum input ports disabled. The Read to delimiter
parameter check box is selected and the Delimiter parameter has the value of
carriage return or line feed. The value of the Maximum read size parameter is large

 FIFO Read

3-11

(along the order of the FIFO size) and the value of Minimum read size parameter is
1. In this form, the driver acts like a nonblocking read line.

An alternate receive-side configuration for fixed-length binary blocks of data has the
value of the Maximum read size and Minimum read size parameters set to the
fixed length of the block. The Read to delimiter parameter is not selected.

For complex data streams, consider using the FIFO Read HDRS and FIFO Read Binary
blocks. For guidelines on when to use these blocks, see “Using the FIFO Read Blocks” on
page 2-9.

Ports

Input
F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

MAX — Maximum number of bytes to read from FIFO
integer

The maximum number of bytes to return from the block.

Dependency

To cause this port to become visible, set parameter Max and Min read size ports.

MIN — Minimum number of bytes to read from FIFO
integer

The minimum number of bytes to return from the block.

Dependency

To cause this port to become visible, set parameter Max and Min read size ports.

3 Serial Communications Support: Blocks

3-12

Output
D — Parsed data read from FIFO
vector

Vector containing the parsed data read from the FIFO.
Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

ENA — Pass value of MAX through
integer

Passes the value of port MAX through to the block that reads the ENA port.
Dependency

To cause this port to become visible, set parameters Max and Min read size ports and
Enable passthrough.

Parameters
Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector
size is one more than this maximum number of characters. This block indicates the
number of characters being returned using the extra element as:

• A null terminator for the 8-bit data types
• The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return
anything. For example, if you enter the value 10, but on execution the FIFO contains 11
characters plus the null terminator, the block does not return any characters. On the
other hand, if it contains 5, the block returns 5 characters plus the null terminator.

If you select the parameter Max and Min read size ports, the block interprets the value
input on port MAX as the maximum number of characters to return. The actual maximum

 FIFO Read

3-13

number of characters to return is the smaller of the value on port MAX and the maximum
read size in the block parameters. Use this value in binary mode when the Read to
delimiter check box is not selected.

Programmatic Use
Block Parameter: maxsize

Minimum read size — Minimum number of characters returned by block
1 (default) | integer

Enter the smallest desired read size in bytes. The FIFO must contain at least this number
of elements before elements are returned.

If you select the parameter Max and Min read size ports, the value of port MIN
supersedes this value.

Programmatic Use
Block Parameter: minsize

Read to delimiter — Return delimited element sets
on (default) | off

Select this check box to enable the return of element sets that terminate with the
Delimiter value. Use this parameter when working with character-based elements.

Programmatic Use
Block Parameter: usedelimiter

Delimiter — Terminator value for delimited element sets
13 (default) | uint

Enter the decimal value for an 8-bit input terminator. This parameter specifies the value
on which a FIFO read operation terminates. It works with the Read to delimiter
parameter. By default, this block looks for a carriage return. It only returns characters
when one is found. For reference, the decimal value of a carriage return is 13, a line feed
is 10.

Programmatic Use
Block Parameter: delimiter

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit
uint | count+16 bit int | count+16 bit uint | 8 bit int null terminated

3 Serial Communications Support: Blocks

3-14

The 8-bit data types produce a null terminated character vector in the output vector. For
16-bit and 32-bit data types, the first element contains the number of elements to expect
in the rest of the output vector.

Programmatic Use
Block Parameter: outputtype

Max and Min read size ports — Enable maximum and minimum input ports
off (default) | on

When this check box is selected:

• The value from input port MAX is the maximum number of characters to be removed
from the FIFO. If this number exceeds the value of Maximum read size, the block
disregards the value from the maximum input port. It takes the value of Maximum
read size as the maximum number of characters to be removed from the FIFO.

• The value from the input port MIN is the minimum number of characters the FIFO
must contain before elements can be returned. This value supersedes the value set
with the Minimum read size parameter.

Causes input ports MAX and MIN to become visible.

Programmatic Use
Block Parameter: enable

Enable passthrough — Enable passthrough of MAX value
off (default) | on

Select this check box to pass the value of input port MAX through to output port ENA.

Dependency

Causes output port ENA to become visible.

Programmatic Use
Block Parameter: enableout

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

 FIFO Read

3-15

Programmatic Use
Block Parameter: sampletime

See Also
FIFO Write

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-16

FIFO Write
Write simple data streams
Library: Simulink Real-Time / RS232

Description
The FIFO Write block is the write side of a FIFO read/write pair. It is used to generate
simple data streams.

Ports

Input
D — Data to write to FIFO
vector

Vector containing the data to write to the FIFO.
Dependency

To determine the data type of this vector, set the parameter Input vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Output
F — FIFO vector
serialfifoptr

Connects to the FIFO that writes data to the serial port.

DP — True if new data is present in the FIFO
true | false

 FIFO Write

3-17

If data is present in the FIFO, returns true.

Dependency

To cause this port to become visible, set parameters Max and Min read size ports and
Enable passthrough.

Parameters
Size — Size of FIFO, in bytes
1024 (default) | integer

Enter the number of elements that can be held in the FIFO at one time. If a write
operation to the FIFO causes the number of elements to exceed Size, an error occurs.

Programmatic Use
Block Parameter: size

Input vector type — Specify input data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit
uint | count+16 bit int | count+16 bit uint | 8 bit int null terminated

For the 16-bit and 32-bit data types, include as first element the number of elements to
expect in the rest of the input vector. The count controls how many bytes that the block
copies into the FIFO. The block does not copy the count itself into the FIFO.

For the 8-bit data types, provide a null terminated character vector in the output vector.
The block copies data into the FIFO up to, but not including, the null terminator.

For more information, see “RS-232 Composite Drivers” on page 2-4.

Programmatic Use
Block Parameter: inputtype

Data present output — Enables output DP
off (default) | on

Select this check box to create the Boolean output DP. If data is present in the FIFO, DP
becomes true. The transmit side of the send/receive subsystem uses this output. This
output is given to the Enable TX block, which enables the transmitter buffer empty
interrupt.

3 Serial Communications Support: Blocks

3-18

Causes output port DP to become visible.

Programmatic Use
Block Parameter: present

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampletime

ID — Identifier for overflow messages
character vector

Enter a user-defined identifier for FIFO overflow messages.

Programmatic Use
Block Parameter: id

See Also
FIFO Read

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

 FIFO Write

3-19

FIFO Read HDRS
Read multiple ASCII data streams according to header information
Library: Simulink Real-Time / RS232

Description
The FIFO Read HDRS block identifies and separates ASCII data streams that have
embedded identifiers.

The data following a particular header can have varying lengths, but has a common
termination marker such as <CR><LF>. Although you can attain this same functionality
with the FIFO Read block, doing so requires a complicated state machine with the
following behavior:

• If the same header arrives in the FIFO more than once after the block was last
executed, the block returns the latest instance of the header. In this way, the block
catches up with data that arrives faster than the block executes.

• If a header arrives in the FIFO that does not match an item in the headers list, the
block discards the message.

• If bytes arrive in the FIFO that do not match a header, the block interprets the
message as having an unspecified header. The block skips these bytes.

The xpcdemos folder contains the following examples that illustrate how to use the FIFO
Read HDRS block: xpcserialasciitest and xpcserialasciisplit.

Ports

Input
F — FIFO from which to read data
serialfifoptr

3 Serial Communications Support: Blocks

3-20

Connects to the software FIFO containing data read from the serial port.

E — Enable read from FIFO
true | false

If true, read from FIFO.

Dependency

To cause this port to become visible, set parameter Enable input.

Output
1 — Numbered output streams, one per header
vector

Vectors containing the parsed data read from the FIFO. Each output corresponds to one
of the headers.

Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Header — Search targets in ASCII data stream
cell array of character vector

Enter the headers that you want the block to look for in a block of data from the FIFO.
Enter each header in single quotes as an element in a cell array.

Programmatic Use
Block Parameter: hdr

Terminating string — Characters that end data stream
[13 10] (default) | [integer]

Enter the terminating character vector for the data. Enter the characters defining the end
of character vector, typically one or two characters.

 FIFO Read HDRS

3-21

Programmatic Use
Block Parameter: nterm

Output behavior — Behavior when no new data
Zero output if no new data (default) | Hold last output if no new data

From the list, select the behavior of the block if the FIFO has not received new data:

• Hold last output if no new data — Block keeps the output from the last FIFO
message.

• Zero output if no new data — Block overwrites the first element of the output
with 0.

Programmatic Use
Block Parameter: hold

Enable input — Enable read from FIFO
off (default) | on

To create an input port that enables or disables the read operation, select this check box.
The input port takes a Boolean signal.
Dependency

Causes input port E to become visible.
Programmatic Use
Block Parameter: enable

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector
size is one more than this maximum number of characters. This block indicates the
number of characters being returned using the extra element as:

• A null terminator for the 8-bit data types
• The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return
anything. For example, if you enter the value 10, but on execution the FIFO contains 11
characters plus the null terminator, the block does not return any characters. On the
other hand, if it contains 5, the block returns 5 characters plus the null terminator.

3 Serial Communications Support: Blocks

3-22

Programmatic Use
Block Parameter: maxsize

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit
uint | count+16 bit int | count+16 bit uint | 8 bit int null terminated

The 8-bit data types produce a null terminated character vector in the output vector. For
16-bit and 32-bit data types, the first element contains the number of elements to expect
in the rest of the output vector.

Programmatic Use
Block Parameter: outputtype

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampletime

See Also
FIFO Read | FIFO Read Binary | FIFO Write

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

 FIFO Read HDRS

3-23

FIFO Read Binary
Read multiple binary data streams according to header information
Library: Simulink Real-Time / RS232

Description
The FIFO Read Binary block reads multiple binary headers from a FIFO.

This block identifies and separates data by finding unique byte sequences (headers) that
mark the data. Each header indicates the start of a fixed-length binary message. If the
same header arrived in the FIFO more than once since the block was last executed, the
block discards the older data. It then returns the latest instance of the header. In this way,
the block catches up with data that arrives faster than the block executes.

The xpcdemos folder contains the following examples that illustrate how to use the FIFO
Read HDRS block: xpcserialbinarytest and xpcserialbinarysplit.

Ports

Input
F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

E — Enable read from FIFO
true | false

If true, read from FIFO.

3 Serial Communications Support: Blocks

3-24

Dependency

To cause this port to become visible, set parameter Enable input.

Output
1 — Numbered output streams, one per header
vector

Vectors containing the parsed data read from the FIFO. Each output corresponds to one
of the headers.

Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Header — Search targets in binary data stream
cell array of binary data

Enter the headers that you want the block to look for in a block of data from the FIFO.
Enter each header as an element in a cell array either as a quoted character vector or a
concatenation with char(val) for non-printable byte patterns.

Programmatic Use
Block Parameter: hdr

Message Lengths — Message lengths, in bytes
1024 (default) | integer

Enter the message length, in bytes. Include the header in the length.

Programmatic Use
Block Parameter: lengths

Output behavior — Behavior when no new data
Zero output if no new data (default) | Hold last output if no new data

From the list, select the behavior of the block if the FIFO has not received new data:

 FIFO Read Binary

3-25

• Hold last output if no new data — Block keeps the output from the last FIFO
message.

• Zero output if no new data — Block overwrites the first element of the output
with 0.

Programmatic Use
Block Parameter: hold

Enable input — Enable read from FIFO
off (default) | on

To create an input port that enables or disables the read operation, select this check box.
The input port takes a Boolean signal.

Dependency

Causes input port E to become visible.

Programmatic Use
Block Parameter: enable

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector
size is one more than this maximum number of characters. This block indicates the
number of characters being returned using the extra element as:

• A null terminator for the 8-bit data types
• The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return
anything. For example, if you enter the value 10, but on execution the FIFO contains 11
characters plus the null terminator, the block does not return any characters. On the
other hand, if it contains 5, the block returns 5 characters plus the null terminator.

Programmatic Use
Block Parameter: maxsize

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit
uint | count+16 bit int | count+16 bit uint | 8 bit int null terminated

3 Serial Communications Support: Blocks

3-26

The 8-bit data types produce a null terminated character vector in the output vector. For
16-bit and 32-bit data types, the first element contains the number of elements to expect
in the rest of the output vector.

Programmatic Use
Block Parameter: outputtype

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampletime

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

 FIFO Read Binary

3-27

Modem Control
Control state of RTS and DTR output lines on serial port
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Modem Control block controls the state of either or both of the RTS and DTR output
lines on the serial port. To choose which output lines to control, select the RTS and DTR
parameters.

Ports

Input
RTS — Level-sensitive signal for setting ready-to-send line
double

The behavior of the block is:

• RTS > 0.5 — The block asserts the RTS control bit to true. The output goes to a
positive voltage.

• RTS ≤ 0.5 — The block asserts the RTS control bit to false. The output goes to a
negative voltage.

Dependency

If the RTS parameter is off, this input has no effect.

DTR — Level-sensitive signal for setting data-terminal-ready line
double

The behavior of the block is:

3 Serial Communications Support: Blocks

3-28

• DTR > 0.5 — The block asserts the DTR control bit to true. The output goes to a
positive voltage.

• DTR ≤ 0.5 — The block asserts the DTR control bit to false. The output goes to a
negative voltage.

Dependency

If the DTR parameter is off, this input has no effect.

Parameters
RTS — Enable control of RTS line for serial device
on (default) | off

Select this check box to control the RTS line for this board.

Programmatic Use
Block Parameter: rts

DTR — Enable control of DTR line for serial device
on (default) | off

Select this check box to control the DTR line for this port.

Programmatic Use
Block Parameter: dtr

Configuration — Specify port of modem control line
COM1 (default) | COM2 | COM3 | COM4 | Custom

From the list, select a port to access:

• COM1 — 0x3F8
• COM2 — 0x2F8
• COM3 — 0x3E8
• COM4 — 0x2E8
• Custom — A port that is set to an address other than the addresses for COM1, COM2,

COM3, or COM4.

The value Custom causes the Base address parameter to become visible.

 Modem Control

3-29

Programmatic Use
Block Parameter: boardtype

Base address — Base address for serial port
0x3f8 (default) | integer

Use this base address to specify a Custom serial port.

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: addr

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-30

Modem Status
Return state of modem control lines
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Modem Status block reads the state of the four input modem control lines.

This block has outputs of type Boolean. If the input voltage is positive, the output is true.
If the input voltage is negative, the output is false.

Ports

Output
CTS — Status of clear to send line
true | false

If true, the modem is ready to receive data.

Dependency

To make this output visible, select the CTS parameter.

DSR — Status of data set ready line
true | false

If true, the modem is ready to send and receive data.

Dependency

To make this output visible, select the DSR parameter.

 Modem Status

3-31

RI — Status of ring indicator line
true | false

If true, the modem has received an incoming ring signal.

Dependency

To make this output visible, select the RI parameter.

DCD — Status of data carrier detect line
true | false

If true, the modem is receiving a carrier from a remote device.

Dependency

To make this output visible, select the DCD parameter.

Parameters
CTS — Enables clear to send status output
on (default) | off

Select this check box to monitor the CTS line of the modem.

Selecting this parameter makes the CTS port visible.

Programmatic Use
Block Parameter: cts

DSR — Enables data set ready status output
on (default) | off

Select this check box to monitor the DSR line of the modem.

Selecting this parameter makes the DSR port visible.

Programmatic Use
Block Parameter: dsr

RI — Enables ring indicator status output
on (default) | off

3 Serial Communications Support: Blocks

3-32

Select this check box to monitor the RI line of the modem.

Selecting this parameter makes the RI port visible.

Programmatic Use
Block Parameter: ring

DCD — Enables data carrier detect status output
on (default) | off

Select this check box to monitor the DCD line of the modem.

Selecting this parameter makes the DCD port visible.

Programmatic Use
Block Parameter: dcd

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampletime

Configuration — Specify port of modem control line
COM1 (default) | COM2 | COM3 | COM4 | Custom

From the list, select a port to access:

• COM1 — 0x3F8
• COM2 — 0x2F8
• COM3 — 0x3E8
• COM4 — 0x2E8
• Custom — A port that is set to an address other than the addresses for COM1, COM2,

COM3, or COM4.

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: boardtype

 Modem Status

3-33

Base address — Base address for serial port
0x3f8 (default) | integer

Use this base address to specify a Custom serial port.

The value Custom causes the Base address parameter to become visible.

Programmatic Use
Block Parameter: addr

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-34

RS-232 Send/Receive
Send and receive data over Mainboard Baseboard serial port
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Send/Receive block sets up the serial interface to send and receive basic character
streams. This block has basic FIFO Read blocks inside the subsystem. It generates output
as an array of packed integers (settable at 8 bits, 16 bits, or 32 bits). Characters appear
in the lower byte and received status information appears in the upper byte.

Only one Send/Receive can exist for each COM interrupt. All ports that use that interrupt
must be associated with that block. For example, if the main board is configured with four
ports, COM1 and COM3 typically share an interrupt. In this case, COM1 and COM3 must
then share a Send/Receive block.

Ports

Input
XMT1 — Vector 1 of data to transmit
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

Vector of data to transmit over port 1.

 RS-232 Send/Receive

3-35

XMT2 — Vector 2 of data to transmit over serial port
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

Vector of data to transmit over port 2.

Output
RCV1 — Vector 1 of data that has been received over serial port
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

Vector containing data that has been received from serial port 1.

RCV2 — Vector 2 of data that has been received over serial port
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

Vector containing data that has been received from serial port 2.

Parameters
Parameter group — Select groups of parameters
Board Setup (default) | Basic Setup | Transmit Setup | Receive Setup

To configure a group of parameters, select a group.

Programmatic Use
Block Parameter: group

Board Setup
Configuration — Specify ports for transmitting and receiving
Com1/none (default) | Com2/none | Com1/Com3 | Com2/Com4 | none/Com3 | none/Com4
| Custom

This parameter specifies the ports for which you are defining transmit and receive. For
example, Com1/Com3 specifies that port 1 uses COM1 and port 2 uses COM3. On the
Simulink block, the upper port is port 1 and the lower port is port 2.

A Custom configuration is one that does not match the existing combinations of port
pairs. For example, assume that your target computer BIOS disables port 1 and

3 Serial Communications Support: Blocks

3-36

reconfigures port 2 to use base address 0x220, IRQ 11. Then you can make the following
settings:

• Configuration — Custom
• IRQ number — 11
• First port address — 0
• Second port address — 0x220

In this case, port 1 is unused.

The value Custom makes the IRQ number, First port address, and Second port
address parameters visible.

Programmatic Use
Block Parameter: config

IRQ number — Base address for serial port 2
4 (default) | integer

Use this IRQ to specify a Custom serial port configuration.

The value Custom causes the IRQ number parameter to become visible.

Programmatic Use
Block Parameter: irqnum

First base address — Base address for serial port 1
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the First base address parameter to become visible.

Programmatic Use
Block Parameter: saddr1

Second base address — Base address for serial port 2
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the Second base address parameter to become visible.

 RS-232 Send/Receive

3-37

Programmatic Use
Block Parameter: saddr2

Basic Setup
Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On
the Simulink block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Baud rate — Baud for transferring data
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

Select a baud for transmitting and receiving data through the modem.

Programmatic Use
Block Parameter: baud1,baud2

Parity — Parity for checking data transfer
None (default) | Even | Odd | Mark | Space

Select a parity for checking data integrity.

Programmatic Use
Block Parameter: parity1,parity2

Data bits — Number of bits per character
8 (default) | 7 | 6 | 5

Select the number of bits that encode a character.

Programmatic Use
Block Parameter: ndata1,ndata2

Stop bits — Number of stop bits for port
1 (default) | 2

Select the number of stop bits for the character stream.

3 Serial Communications Support: Blocks

3-38

Programmatic Use
Block Parameter: nstop1,nstop2

Hardware FIFO size — Specify FIFO depth of UART
16 deep (default) | 64 deep | 1 deep

Depth of hardware FIFO, in characters. The capability of the UART limits the depth of the
FIFO.
Programmatic Use
Block Parameter: fifomode1,fifomode2

Receive FIFO interrupt level — Number of characters in hardware FIFO
before interrupt
half full (default) | 1 | quarter full | almost full

This parameter specifies the number of characters in the receive hardware FIFO before
an interrupt occurs.

Receive interrupts occur at least as often as this parameter specifies. Each interrupt calls
the interrupt service routine, causing overhead. Interrupt level 1 produces much higher
overhead than the other settings. Consider interrupt level 1 only for applications that
have low latency.

If both of the following are true, the UART requests an interrupt for the receiver
regardless of the value of Receive FIFO interrupt level:

• The FIFO contains at least 1 character.
• A gap of at least 4 character times (the time required to transfer four characters)

occurs in a data stream.

Programmatic Use
Block Parameter: rlevel1,rlevel2

Auto RTS/CTS — Enable RTS/CTS handshake
off (default) | on

To enable the RTS/CTS handshake of the UART for flow control, select this check box.
Serial controllers use the RTS/CTS handshake to prevent data loss due to hardware FIFO
overflow on the device that you are sending to.

Usually, the interrupt service routine executes quickly enough to empty the FIFO.
However, if your model gets FIFO overruns, select this check box.

 RS-232 Send/Receive

3-39

Programmatic Use
Block Parameter: automode1,automode2

Transmit Setup
Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On
the Simulink block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Transmit software FIFO size — Transmitter FIFO size, in bytes
1024 (default) | integer

Enter the transmit software FIFO size, in bytes. This parameter specifies the size of the
software FIFO that the block uses to buffer transmitted characters.

Programmatic Use
Block Parameter: xmtfifosize1,xmtfifosize2

Transmit FIFO data type — Data type of transmitter
8 bit uint null terminated (default) | count+32 bit int | count+32 bit
uint | count+16 bit int | count+16 bit uint | 8 bit int null terminated

This parameter specifies the data type of the transmitter. The 8-bit data types require a
NULL-terminated character vector in the input vector.

The 16-bit and 32-bit data types reserve the first full element to contain the number of
elements to expect in the rest of the input vector. Only the low-order byte of each data
element is sent. Setting this data type allows a wider data type to hold the bytes.

If the data stream requires a NULL byte, select one of the 16-bit or 32-bit data types.
Because the 8-bit data types are NULL terminated character vectors, the NULL byte
would terminate the character vector.

Programmatic Use
Block Parameter: xmtdatatype1,xmtdatatype2

3 Serial Communications Support: Blocks

3-40

Receive Setup
Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On
the Simulink block, the upper port is port 1 and the lower port is port 2.
Programmatic Use
Block Parameter: port

Receive software FIFO size — Receiver FIFO size, in bytes
integer

Enter the receive software FIFO size, in bytes. This parameter specifies the size of the
software FIFO that the block uses to buffer characters between interrupt service and
periodic execution.
Programmatic Use
Block Parameter: rcvfifosize1,rcvfifosize2

Receive maximum read — Maximum number of elements for block to return
1024 (default) | integer

Enter the maximum number of elements that you want returned by a single call to this
block. The block uses this parameter to set the output vector width.

If the Read to delimiter check box is selected and if the block does not find the delimiter
before it reads Receive maximum read characters, the output vector is empty.
Programmatic Use
Block Parameter: rcvmaxread1,rcvmaxread2

Receive minimum read — Minimum number of elements for block to return
1 (default) | integer

Enter the minimum number of characters to read. If the FIFO does not contain at least
this number of characters, the output vector is empty.
Programmatic Use
Block Parameter: rcvminread1,rcvminread2

Read to delimiter — Return characters including message delimiter
on (default) | off

 RS-232 Send/Receive

3-41

Select this check box to have this block return all characters in the FIFO, up to and
including the specified delimiter.

If the buffer has errors, such as framing errors, the modem returns characters regardless
of the presence of the delimiter. This special case helps diagnose errors such as
mismatched baud rates.

If the block does not find the delimiter before it reads Receive maximum read
characters, the output vector is empty.
Programmatic Use
Block Parameter: rcvusedelim1,rcvusedelim2

Delimiter — Numeric value of message delimiter
13 (default) | integer

Enter the numeric value of the character that is the message delimiter. Any value from 0
to 255 is valid. The common case looks for 10 (line feed) or 13 (carriage return).
Programmatic Use
Block Parameter: rcvdelim1,rcvdelim2

Receive FIFO data type — Data type of receiver
count+16 bit uint (default) | 8 bit uint null terminated | count+32 bit
int | count+32 bit uint | count+16 bit int | 8 bit int null terminated

This parameter specifies the data type of the receiver. The 8-bit data types produce a
NULL-terminated character vector in the output vector.

For 16-bit and 32-bit data types, the first element contains the number of valid elements
in the rest of the output vector.

For 8-bit data types, only the character data is in the output vector, and a NULL
terminator is appended. The 16-bit or 32-bit wide data types cause the error status from
the UART to be placed in the second byte of each data element. (The error status contains
the parity, overrun, framing, and break bits.) The character data is in the bottom 8 bits of
each element; the first element of the vector contains the number of data elements that
follow.
Programmatic Use
Block Parameter: rcvdatatype1,rcvdatatype2

Receive Sample Time — Sample time of receiver
-1 (default) | numeric

3 Serial Communications Support: Blocks

3-42

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: rcvsampletime1,rcvsampletime2

See Also
RS-232 Send/Receive FIFO

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

 RS-232 Send/Receive

3-43

RS-232 Send/Receive FIFO
Send and receive data over Mainboard Baseboard serial port with FIFO
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Send/Receive FIFO block sets up the serial interface to send and receive character
and binary streams. It transmits input data as does the Send/Receive block, but it
propagates received data through FIFO outputs.

A model that contains a Send/Receive FIFO block with the FIFO Read block provides the
same capability as the Send/Receive block. A model that contains a Send/Receive FIFO
block with a FIFO Read HDRS or FIFO Read Binary block provides greater capability than
the Send/Receive block.

Only one Send/Receive can exist for each COM interrupt. All ports that use that interrupt
must be associated with that block. For example, if the main board is configured with four
ports, COM1 and COM3 typically share an interrupt. In this case, COM1 and COM3 must
then share a Send/Receive block.

Ports
Input
XMT1 — Vector 1 of data to transmit
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

3 Serial Communications Support: Blocks

3-44

Vector of data to transmit over port 1.

XMT2 — Vector 2 of data to transmit over serial port
[int8] | [uint8] | [int16] | [uint16] | [int32] | [uint32]

Vector of data to transmit over port 2.

Output
FIFO1 — FIFO 1 of data that has been received over serial port
serialfifoptr

FIFO containing data that has been received from serial port 1.

FIFO2 — FIFO 2 of data that has been received over serial port
serialfifoptr

FIFO containing data that has been received from serial port 2.

Parameters
Parameter group — Select groups of parameters
Board Setup (default) | Basic Setup | FIFO Setup

To configure a group of parameters, select a group.
Programmatic Use
Block Parameter: group

Board Setup
Configuration — Specify ports for transmitting and receiving
Com1/none (default) | Com2/none | Com1/Com3 | Com2/Com4 | none/Com3 | none/Com4
| Custom

This parameter specifies the ports for which you are defining transmit and receive. For
example, Com1/Com3 specifies that port 1 uses COM1 and port 2 uses COM3. On the
Simulink block, the upper port is port 1 and the lower port is port 2.

A Custom configuration is one that does not match the existing combinations of port
pairs. For example, assume that your target computer BIOS disables port 1 and

 RS-232 Send/Receive FIFO

3-45

reconfigures port 2 to use base address 0x220, IRQ 11. Then you can make the following
settings:

• Configuration — Custom
• IRQ number — 11
• First port address — 0
• Second port address — 0x220

In this case, port 1 is unused.

The value Custom makes the IRQ number, First port address, and Second port
address parameters visible.

Programmatic Use
Block Parameter: config

IRQ number — Base address for serial port 2
4 (default) | integer

Use this IRQ to specify a Custom serial port configuration.

The value Custom causes the IRQ number parameter to become visible.

Programmatic Use
Block Parameter: irqnum

First base address — Base address for serial port 1
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the First base address parameter to become visible.

Programmatic Use
Block Parameter: saddr1

Second base address — Base address for serial port 2
0x3f8 (default) | integer

Use this base address to specify a Custom serial port configuration.

The value Custom causes the Second base address parameter to become visible.

3 Serial Communications Support: Blocks

3-46

Programmatic Use
Block Parameter: saddr2

Basic Setup
Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On
the Simulink block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Baud rate — Baud for transferring data
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

Select a baud for transmitting and receiving data through the modem.

Programmatic Use
Block Parameter: baud1,baud2

Parity — Parity for checking data transfer
None (default) | Even | Odd | Mark | Space

Select a parity for checking data integrity.

Programmatic Use
Block Parameter: parity1,parity2

Data bits — Number of bits per character
8 (default) | 7 | 6 | 5

Select the number of bits that encode a character.

Programmatic Use
Block Parameter: ndata1,ndata2

Stop bits — Number of stop bits for port
1 (default) | 2

Select the number of stop bits for the character stream.

 RS-232 Send/Receive FIFO

3-47

Programmatic Use
Block Parameter: nstop1,nstop2

Hardware FIFO size — Specify FIFO depth of UART
16 deep (default) | 64 deep | 1 deep

Depth of hardware FIFO, in characters. The capability of the UART limits the depth of the
FIFO.
Programmatic Use
Block Parameter: fifomode1,fifomode2

Receive FIFO interrupt level — Number of characters in hardware FIFO
before interrupt
half full (default) | 1 | quarter full | almost full

This parameter specifies the number of characters in the receive hardware FIFO before
an interrupt occurs.

Receive interrupts occur at least as often as this parameter specifies. Each interrupt calls
the interrupt service routine, causing overhead. Interrupt level 1 produces much higher
overhead than the other settings. Consider interrupt level 1 only for applications that
have low latency.

If both of the following are true, the UART requests an interrupt for the receiver
regardless of the value of Receive FIFO interrupt level:

• The FIFO contains at least 1 character.
• A gap of at least 4 character times (the time required to transfer four characters)

occurs in a data stream.

Programmatic Use
Block Parameter: rlevel1,rlevel2

Auto RTS/CTS — Enable RTS/CTS handshake
off (default) | on

To enable the RTS/CTS handshake of the UART for flow control, select this check box.
Serial controllers use the RTS/CTS handshake to prevent data loss due to hardware FIFO
overflow on the device that you are sending to.

Usually, the interrupt service routine executes quickly enough to empty the FIFO.
However, if your model gets FIFO overruns, select this check box.

3 Serial Communications Support: Blocks

3-48

Programmatic Use
Block Parameter: automode1,automode2

FIFO Setup
Port to modify — Specify port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On
the Simulink block, the upper port is port 1 and the lower port is port 2.
Programmatic Use
Block Parameter: port

Transmit software FIFO size — Transmitter FIFO size, in bytes
1024 (default) | integer

Enter the transmit software FIFO size, in bytes. This parameter specifies the size of the
software FIFO that the block uses to buffer transmitted characters.
Programmatic Use
Block Parameter: xmtfifosize1,xmtfifosize2

Transmit FIFO data type — Data type of transmitter
8 bit uint null terminated (default) | count+32 bit int | count+32 bit
uint | count+16 bit int | count+16 bit uint | 8 bit int null terminated

This parameter specifies the data type of the transmitter. The 8-bit data types require a
NULL-terminated character vector in the input vector.

The 16-bit and 32-bit data types reserve the first full element to contain the number of
elements to expect in the rest of the input vector. Only the low-order byte of each data
element is sent. Setting this data type allows a wider data type to hold the bytes.

If the data stream requires a NULL byte, select one of the 16-bit or 32-bit data types.
Because the 8-bit data types are NULL terminated character vectors, the NULL byte
would terminate the character vector.
Programmatic Use
Block Parameter: xmtdatatype1,xmtdatatype2

Receive software FIFO size — Receiver FIFO size, in bytes
integer

 RS-232 Send/Receive FIFO

3-49

Enter the receive software FIFO size, in bytes. This parameter specifies the size of the
software FIFO that the block uses to buffer characters between interrupt service and
periodic execution.

Programmatic Use
Block Parameter: rcvfifosize1,rcvfifosize2

See Also
FIFO Read | FIFO Read Binary | FIFO Read HDRS | RS-232 Send/Receive

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-50

RS232 State
Monitor board state information from send/receive block
Library: Simulink Real-Time / RS232

Description
The RS232 State block monitors the UART status that comes from a receive port of a
send/receive block. The driver puts the UART status in 16-bit or 32-bit data streams. The
RS232 State block looks at this status. Only the FIFO Read block passes this status
information to its output port.

The RS232 State block accumulates errors over the whole input vector. An output error
state is true if it is true for any byte in the input vector.

Ports
Input
D — Input vector from send/receive block
[int8] | [uint8] | [int16] | [uint16]

The error status depends upon the data type of input vector D:

• int16, uint16 — The upper byte contains the error status bits from the UART.
• int8, uint8 — No error status is available. The Boolean outputs are false.

Output
D — Passthrough of input vector
int8 | uint8 | int16 | uint16

Passes through the input vector D.

 RS232 State

3-51

O — Overrun error status
true | false

If the hardware FIFO in the UART is full when a character on the serial port enters the
UART, this output is true.

Dependency

To make this output visible, select the Overrun error output parameter.

P — Parity error status
true | false

If any byte in the input vector fails the parity check, this output is true.

Dependency

To make this output visible, select the Parity error output parameter.

F — Framing error status
true | false

If a framing error occurs on any character in this vector, this output is true. For example,
a framing error can occur if the baud rates between the transmitter and receiver do not
match.

Dependency

To make this output visible, select the Framing error output parameter.

B — Line break interrupt status
true | false

If the UART detects a serial line break condition, this output is true. A line break
interrupt is not an error, but the UART treats it like an error state.

To detect a line break condition, the UART checks how long the serial line remains at
voltage 0 (not mark and not space). If the line is at voltage 0 for longer than the time
required to receive one character, the UART detects a line break. For some serial I/O port
modules, disconnecting the serial cable does not cause a line break.

Dependency

To make this output visible, select the Break interrupt output parameter.

3 Serial Communications Support: Blocks

3-52

Parameters
Overrun error output — Enable overrun error check
on (default) | off

Select this check box to retrieve overrun error output.

Selecting this parameter makes the O port visible.

Programmatic Use
Block Parameter: overrun

Parity error output — Enable parity error check
on (default) | off

Select this check box to retrieve parity error output.

Selecting this parameter makes the P port visible.

Programmatic Use
Block Parameter: parity

Framing error output — Enable framing error check
off (default) | on

Select this check box to retrieve framing error output.

Selecting this parameter makes the F port visible.

Programmatic Use
Block Parameter: frame

Break interrupt output — Enable break interrupt check
off (default) | on

Select this check box to retrieve break interrupt output.

Selecting this parameter makes the B port visible.

Programmatic Use
Block Parameter: breakint

 RS232 State

3-53

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced in R2008a

3 Serial Communications Support: Blocks

3-54

Serial Communications Support:
Internal Blocks

A

RS-232 Enable TX Interrupt
RS-232 Enable TX Interrupt Mainboard Baseboard block

Library
Simulink Real-Time Library for RS-232

Description
The Enable TX Interrupt block enables the transmitter buffer empty interrupt when data
is present in the software FIFO.

The input port for controlling the interrupt is a Boolean value. If the input port value is
true, the Enable Transmit Interrupt block enables the transmitter buffer empty interrupt
in the UART. After the interrupt service routine empties the software FIFO, the interrupt
is disabled.

Block Parameters
Base address

Enter the base address of the UART for which you want to enable the transmitter
buffer empty interrupt.

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced before R2006a

A RS-232 Enable TX Interrupt

A-2

RS-232 Filter Interrupt Reason
RS-232 Filter Interrupt Reason Mainboard Baseboard block

Library
Simulink Real-Time Library for RS-232

Description
The Filter Interrupt Reason block filters the output of the Read Interrupt Status block.

If the condition that the interrupt query block reads from the IRR register matches the
one specified here, the output is true.

This block is used exclusively inside the interrupt service subsystem for this board.

Block Parameters
Port

From the list, choose a port. This parameter specifies the port from which this block
gets control data.

Filter value
From the list, choose Receive data, Transmitter empty, or Modem status
change. This parameter specifies the interrupt reason that this filter block is looking
for.

Note that Modem status change currently does nothing because the interrupt is
not enabled.

 RS-232 Filter Interrupt Reason

A-3

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced before R2006a

A RS-232 Filter Interrupt Reason

A-4

RS-232 Read Hardware FIFO
RS-232 Read Hardware FIFO Mainboard Baseboard block

Library
Simulink Real-Time Library for RS-232

Description
The Read Hardware FIFO block reads characters from the I/O module FIFO in the UART.

It then outputs those characters as the low-order byte of an unsigned 32-bit integer
vector with a width of 65. This output vector is large enough to hold the maximum
number of characters that the FIFO can hold. The first element of the vector specifies the
number of data elements in the remainder of the vector.

If the input to the enable port (input port, labeled E) is not true, this block outputs a zero-
length vector. The following illustrates the vector.

The UART error status can contain one of the following error values:

0x02 — Overrun error

0x04 — Parity error

0x08 — Framing error

0x01 — Break interrupt

 RS-232 Read Hardware FIFO

A-5

The data byte ranges from 0 to 255.

The dialog box for the RS-232 FIFO Read block contains the following fields.

Block Parameters
Flush HW FIFO on startup

Select this check box to flush the FIFO when the device starts up.
Base address

Enter the base address of the UART for which you want to read the FIFO.

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced before R2006a

A RS-232 Read Hardware FIFO

A-6

RS-232 Read Interrupt Status
RS-232 Read Interrupt Status Mainboard Baseboard block

Library
Simulink Real-Time Library for RS-232

Description
The Read Interrupt Status block reads the interrupt status for the boards in the system.

The output for this block is a vector with one 32-bit element for each port. Each element
contains two pieces of information for that port, where the 4 bytes are:

[0, 0, IRR, Reason]

The Read Interrupt Status block has signal output with the following format:

This output is a vector of integers. The values in the reason byte and their definitions are:

• 0 — This UART did not cause this interrupt.
• 1 — Receive characters are available.
• 2 — Transmit holding register is empty.
• 3 — Modem status has changed (ignored).

The second byte is the value read from the Interrupt Reason Register (IRR). This register
is specific to the 16450, 16550, and 16750 types of UARTs. Some bytes in this register
give the active FIFO depth. Other bytes give the maximum number of characters that the
transmitter empty interrupt handlers can write to the transmit FIFO.

 RS-232 Read Interrupt Status

A-7

Block Parameters
Base address 1

Enter the base address of the first UART for which you want to read the interrupt
status.

Base address 2
Enter the base address of the second UART for which you want to read the interrupt
status.

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced before R2006a

A RS-232 Read Interrupt Status

A-8

RS-232 Setup
RS-232 Setup Mainboard Baseboard block

Library
Simulink Real-Time Library for RS-232

Description
A setup block is a subsystem block that sets up the interface characteristics for the board.

Block Parameters
Baud rate

From the list, choose a baud.
Number of data bits

From the list, choose either 5, 6, 7 or 8 to define the number of data bits for the port.
Number of stop bits

From the list, choose either 1 or 2 to define the number of stop bits for the port.
Parity

From the list, choose None, Even, Odd, Mark or Space. This parameter defines the
receive and transfer parity.

Fifo mode
From the list, choose 64 deep, 16 deep, or 1 deep. This parameter sets the
transmit and receive FIFO depth. The UART can operate with a FIFO depth of 1
character (1 deep), 16 characters (16 deep), or 64 characters (64 deep).

Receive trigger level
From the list, choose 1, quarter full, half full, or almost full. This
parameter defines a trigger level for a receive data available interrupt. When the
FIFO reaches the level specified in this parameter, the driver asserts the receive data
available interrupt.

 RS-232 Setup

A-9

Enable auto RTS/CTS
Select this check box to enable handshaking using the RTS and CTS modem control
lines. If this is not checked, handshaking is not done.

Base Address
Enter the base address of the board that you are setting up.

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced before R2006a

A RS-232 Setup

A-10

RS-232 Write Hardware FIFO
RS-232 Write Hardware FIFO Mainboard Baseboard block

Library
Simulink Real-Time Library for RS-232

Description
The Write Hardware FIFO block writes the data from the input port (labeled E) to the
FIFO in the I/O module UART for this port.

The following pseudocode describes the behavior of this FIFO.
if (enable is false)
 return
else
{
 if (input data empty)
 disable transmitter buffer empty interrupt
 return
 else
 copy input data to HW FIFO
}

In words: if the enable port (input port E) becomes true and the input data has length 0,
then the block turns off the transmitter buffer empty interrupt. Otherwise, the block adds
input data to the FIFO.

Block Parameters
Base address

Enter the base address of the UART for which you want to write the FIFO.

 RS-232 Write Hardware FIFO

A-11

See Also

Topics
“RS-232 Serial Communication” on page 2-2
“RS-232 Composite Drivers” on page 2-4

Introduced before R2006a

A RS-232 Write Hardware FIFO

A-12

CAN, Encoders, Ethernet,
EtherCAT

13

CAN Utility Blocks

4

CAN Pack
Pack individual signals into CAN message

Library
CAN Communication

Embedded Coder®/ Embedded Targets/ Host Communication

Description
The CAN Pack block loads signal data into a message at specified intervals during the
simulation.

Note To use this block, you also need a license for Simulink software.

CAN Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals you specify for the block. For example, if your block has
four signals, it has four block inputs.

This block has one output port, CAN Msg. The CAN Pack block takes the specified input
parameters and packs the signals into a message.

Other Supported Features
The CAN Pack block supports:

• The use of Simulink Accelerator™ Rapid Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

4 CAN Utility Blocks

4-2

• The use of model referencing. Using this feature, your model can include other
Simulink models as modular components.

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or
unsigned integers greater than 32 bits long.

For more information on these features, see the Simulink documentation.

Dialog Box
Use the Function Block Parameters dialog box to select your CAN Pack block parameters.

Parameters
Data is input as

Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this option, you only
specify the message fields. all other signal parameter fields are unavailable. This
option opens only one input port on your block.

• manually specified signals: Allows you to specify data signal definitions. If you
select this option, use the Signals table to create your signals. The number of
block inputs depends on the number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains
message and signal definitions. If you select this option, select a CANdb file. The
number of block inputs depends on the number of signals specified in the CANdb
file for the selected message.

Note The block supports the following input signals data types: single, double, int8,
int16, int32, int64, uint8, uint16, uint32, uint64, and boolean. The block does not support
fixed-point data types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the
Data is input as list. Click Browse to find the CANdb file on your system. The

 CAN Pack

4-3

message list specified in the CANdb file populates the Message section of the dialog
box. The CANdb file also populates the Signals table for the selected message.

Note File names that contain non-alphanumeric characters such as equal signs,
ampersands, and so forth are not valid CAN database file names. You can use periods
in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Message list
This option is available if you specify that your data is input via a CANdb file in the
Data is input as field and you select a CANdb file in the CANdb file field. Select the
message to display signal details in the Signals table.

Message
Name

Specify a name for your CAN message. The default is CAN Msg. This option is
available if you choose to input raw data or manually specify signals. This option in
unavailable if you choose to use signals from a CANdb file.

Identifier type
Specify whether your CAN message identifier is a Standard or an Extended type.
The default is Standard. A standard identifier is an 11-bit identifier and an extended
identifier is a 29-bit identifier. This option is available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the Identifier type
inherits the type from the database.

Identifier
Specify your CAN message ID. This number must be a positive integer from 0 through
2047 for a standard identifier and from 0 through 536870911 for an extended
identifier. You can also specify hexadecimal values using the hex2dec function. This
option is available if you choose to input raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb
specified signals for your data input, the CANdb file defines the length of your
message. If not, this field defaults to 8. This option is available if you choose to input
raw data or manually specify signals.

4 CAN Utility Blocks

4-4

Remote frame
Specify the CAN message as a remote frame.

Output as bus
Select this option for the block to output CAN messages as a Simulink bus signal. For
more information on Simulink bus objects, see “Composite Signals” (Simulink).

Signals Table
This table appears if you choose to specify signals manually or define signals using a
CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and
you cannot edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table.
Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays
this name. The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from
the start of the message data. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an
integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel®). In this format you
count bits from the start, which is the least significant bit, to the most significant
bit, which has the highest bit index. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this
figure.

 CAN Pack

4-5

Little-Endian Byte Order Counted from the Least Significant Bit to the
Highest Address

• BE: Where byte order is in big-endian format (Motorola®). In this format you count
bits from the start, which is the least significant bit, to the most significant bit. For
example, if you pack one byte of data in big-endian format, with the start bit at 20,
the data bit table resembles this figure.

4 CAN Utility Blocks

4-6

Big-Endian Byte Order Counted from the Least Significant Bit to the
Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block packs the signals into the CAN message at each timestep:

 CAN Pack

4-7

• Standard: The signal is packed at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can

specify only one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode

signal) at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in
every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block packs Signal-B
along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block packs Signal-C
along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the
Multiplexed signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be
Multiplexed. The value you provide here must match the Multiplexor signal
value at run time for the block to pack the Multiplexed signal. The Multiplex
value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the
raw value packed in the message. See “Conversion Formula” on page 4-9 to
understand how physical values are converted to raw values packed into a message.

4 CAN Utility Blocks

4-8

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the
raw value packed in the message. See “Conversion Formula” on page 4-9 to
understand how physical values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and
Inf, respectively. For CANdb specified signals, these settings are read from the
CAN database. For manually specified signals, you can specify the minimum and
maximum physical value of the signal. By default, these settings do not clip signal
values that exceed them.

Conversion Formula
The conversion formula is

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal, and raw_value is the packed
signal value.

See Also
Blocks
CAN Unpack

Introduced in R2009a

 CAN Pack

4-9

CAN Unpack
Unpack individual signals from CAN messages

Library
CAN Communication

Embedded Coder/ Embedded Targets/ Host Communication

Description
The CAN Unpack block unpacks a CAN message into signal data using the specified
output parameters at every timestep. Data is output as individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN Unpack block has one output port by default. The number of output ports is
dynamic and depends on the number of signals you specify for the block to output. For
example, if your block has four signals, it has four output ports.

Other Supported Features
The CAN Unpack block supports:

• The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can
speed up the execution of Simulink models.

4 CAN Utility Blocks

4-10

• The use of model referencing. Using this feature, your model can include other
Simulink models as modular components.

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or
unsigned integers greater than 32 bits long.

For more information on these features, see the Simulink documentation.

Dialog Box
Use the Function Block Parameters dialog box to select your CAN message unpacking
parameters.

Parameters
Data to be output as

Select your data signal:

• raw data: Output data as a uint8 vector array. If you select this option, you only
specify the message fields. The other signal parameter fields are unavailable. This
option opens only one output port on your block.

• manually specified signals: Allows you to specify data signals. If you select this
option, use the Signals table to create your signals message manually.

The number of output ports on your block depends on the number of signals you
specify. For example, if you specify four signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN database file that contains
data signals. If you select this option, select a CANdb file.

The number of output ports on your block depends on the number of signals
specified in the CANdb file. For example, if the selected message in the CANdb file
has four signals, your block has four output ports.

Note For manually or CANdb specified signals, the default output signal data type is
double. To specify other types, use a Signal Specification block. This allows the block to

 CAN Unpack

4-11

support the following output signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the
Data to be output as list. Click Browse to find the CANdb file on your system. The
messages and signal definitions specified in the CANdb file populate the Message
section of the dialog box. The signals specified in the CANdb file populate Signals
table.

Note File names that contain non-alphanumeric characters such as equal signs,
ampersands, and so forth are not valid CAN database file names. You can use periods
in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Message list
This option is available if you specify that your data is to be output as a CANdb file in
the Data to be output as list and you select a CANdb file in the CANdb file field.
You can select the message that you want to view. The Signals table then displays the
details of the selected message.

Message
Name

Specify a name for your CAN message. The default is CAN Msg. This option is
available if you choose to output raw data or manually specify signals.

Identifier type
Specify whether your CAN message identifier is a Standard or an Extended type.
The default is Standard. A standard identifier is an 11-bit identifier and an extended
identifier is a 29-bit identifier. This option is available if you choose to output raw data
or manually specify signals. For CANdb-specified signals, the Identifier type inherits
the type from the database.

Identifier
Specify your CAN message ID. This number must be a integer from 0 through 2047
for a standard identifier and from 0 through 536870911 for an extended identifier. If

4 CAN Utility Blocks

4-12

you specify –1, the block unpacks the messages that match the length specified for
the message. You can also specify hexadecimal values using the hex2dec function.
This option is available if you choose to output raw data or manually specify signals.

Length (bytes)
Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb
specified signals for your output data, the CANdb file defines the length of your
message. If not, this field defaults to 8. This option is available if you choose to output
raw data or manually specify signals.

Signals Table
This table appears if you choose to specify signals manually or define signals using a
CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and
you cannot edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table.
Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays
this name. The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from
the start of the message. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an
integer from 1 through 64.

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count
bits from the start, which is the least significant bit, to the most significant bit,
which has the highest bit index. For example, if you pack one byte of data in little-
endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN Unpack

4-13

Little-Endian Byte Order Counted from the Least Significant Bit to the
Highest Address

• BE: Where the byte order is in big-endian format (Motorola). In this format you
count bits from the start, which is the least significant bit, to the most significant
bit. For example, if you pack one byte of data in big-endian format, with the start
bit at 20, the data bit table resembles this figure.

4 CAN Utility Blocks

4-14

Big-Endian Byte Order Counted from the Least Significant Bit to the
Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block unpacks the signals from the CAN message at each timestep:

 CAN Unpack

4-15

• Standard: The signal is unpacked at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can

specify only one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal

(mode signal) at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in
every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block unpacks
Signal-B along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block unpacks
Signal-C along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the
Multiplexed signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be
Multiplexed. The value you provide here must match the Multiplexor signal
value at run time for the block to unpack the Multiplexed signal. The Multiplex
value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical
value (signal value). See “Conversion Formula” on page 4-18 to understand how
unpacked raw values are converted to physical values.

4 CAN Utility Blocks

4-16

Offset
Specify the Offset value applied to convert the physical value (signal value) to the
unpacked raw value. See “Conversion Formula” on page 4-18 to understand how
unpacked raw values are converted to physical values.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity)
and Inf, respectively. For CANdb specified signals, these settings are read from the
CAN database. For manually specified signals, you can specify the minimum and
maximum physical value of the signal. By default, these settings do not clip signal
values that exceed them.

Output Ports
Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a CAN message identifier. The data type of this port is
uint32.

Output remote
Select this option to output the message remote frame status. This option adds a new
output port to the block. The data type of this port is uint8.

Output timestamp
Select this option to output the message time stamp. This option adds a new output
port to the block. The data type of this port is double.

Output length
Select this option to output the length of the message in bytes. This option adds a new
output port to the block. The data type of this port is uint8.

Output error
Select this option to output the message error status. This option adds a new output
port to the block. The data type of this port is uint8.

Output status
Select this option to output the message received status. The status is 1 if the block
receives new message and 0 if it does not. This option adds a new output port to the
block. The data type of this port is uint8.

 CAN Unpack

4-17

If you do not select an Output ports option, the number of output ports on your block
depends on the number of signals you specify.

Conversion Formula
The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled
signal value.

See Also
Blocks
CAN Pack

Introduced in R2009a

4 CAN Utility Blocks

4-18

CAN FD Pack
Pack individual signals into message for CAN FD bus

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Pack block loads signal data into a message at specified intervals during the
simulation.

Note To use this block, you also need a license for Simulink software.

The CAN FD Pack block has one input port by default. The number of block inputs is
dynamic and depends on the number of signals you specify for the block. For example, if
your block has four signals, it has four block inputs.

This block has one output port, Msg. The CAN FD Pack block takes the specified input
parameters and packs the signals into a bus message.

The block outputs CAN FD messages as a Simulink bus signal. For more information on
Simulink bus objects, see “Composite Signals” (Simulink).

Other Supported Features
The CAN FD Pack block supports:

 CAN FD Pack

4-19

• The use of Simulink Accelerator mode. Using this feature, you can speed up the
execution of Simulink models. For more information, see “Acceleration” (Simulink).

• Code generation to deploy models to targets.

Note Code generation is not supported if your signal information consists of signed or
unsigned integers greater than 32 bits long.

Dialog Box
Use the Function Block Parameters dialog box to select your CAN FD Pack block
parameters.

Parameters
Data is input as

Select your data signal:

• raw data: Input data as a uint8 vector array. If you select this option, you only
specify the message fields. All other signal parameter fields are unavailable. This
option opens only one input port on your block.

• manually specified signals: Allows you to specify data signal definitions. If you
select this option, use the Signals table to create your signals. The number of
block inputs depends on the number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains
message and signal definitions. If you select this option, select a CANdb file. The
number of block inputs depends on the number of signals specified in the CANdb
file for the selected message.

Note The block supports the following input signals data types: single, double, int8,
int16, int32, int64, uint8, uint16, uint32, uint64, and boolean. The block does not support
fixed-point data types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the
Data is input as list. Click Browse to find the CANdb file on your system. The

4 CAN Utility Blocks

4-20

message list specified in the CANdb file populates the Message section of the dialog
box. The CANdb file also populates the Signals table for the selected message.

Note File names that contain non-alphanumeric characters such as equal signs,
ampersands, and so forth are not valid CAN database file names. You can use periods
in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Message list
This option is available if you specify that your data is input via a CANdb file in the
Data is input as field and you select a CANdb file in the CANdb file field. Select the
message to display signal details in the Signals table.

Message
Name

Specify a name for your CAN FD message. The default is Msg. This option is available
if you choose to input raw data or manually specify signals. This option in unavailable
if you choose to use signals from a CANdb file.

Protocol mode
Specify the message protocol mode as CAN FD or CAN.

Identifier type
Specify whether your message identifier is a Standard or an Extended type. The
default is Standard. A standard identifier is an 11-bit identifier and an extended
identifier is a 29-bit identifier. This option is available if you choose to input raw data
or manually specify signals. For CANdb specified signals, the Identifier type
inherits the type from the database.

Identifier
Specify your message ID. This number must be a positive integer from 0 through 2047
for a standard identifier and from 0 through 536870911 for an extended identifier.
You can also specify hexadecimal values using the hex2dec function. This option is
available if you choose to input raw data or manually specify signals.

Length (bytes)
Specify the length of your message. For CAN messages the value can be 0-8 bytes; for
CAN FD the value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using

 CAN FD Pack

4-21

CANdb specified signals for your data input, the CANdb file defines the length
of your message. This option is available if you choose to input raw data or manually
specify signals.

Remote frame
(Disabled for CAN FD protocol mode.) Specify the CAN message as a remote frame.

Bit Rate Switch (BRS)
(Disabled for CAN protocol mode.) Enable bitrate switch.

Signals Table
This table appears if you choose to specify signals manually or define signals using a
CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and
you cannot edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table.
Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays
this name. The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from
the start of the message data. For CAN the start bit must be an integer from 0
through 63, for CAN FD 0 through 511, within the number of bits in the message.
(Note that message length is specified in bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an
integer from 1 through 64. The sum of all the signal lengths in a message is limited to
the number of bits in the message length; that is, all signals must cumulatively fit
within the length of the message. (Note that message length is specified in bytes and
signal length in bits.)

Byte order
Select either of the following options:

4 CAN Utility Blocks

4-22

• LE: Where the byte order is in little-endian format (Intel). In this format you count
bits from the start, which is the least significant bit, to the most significant bit,
proceeding to the next higher byte as you cross a byte boundary. For example, if
you pack one byte of data in little-endian format, with the start bit at 20, the data
bit table resembles this figure.

Little-Endian Byte Order Counted from the Least Significant Bit to the
Highest Address

• BE: Where byte order is in big-endian format (Motorola). In this format you count
bits from the start, which is the least significant bit, to the most significant bit,
proceeding to the next lower byte as you cross a byte boundary. For example, if
you pack one byte of data in big-endian format, with the start bit at 20, the data bit
table resembles this figure.

 CAN FD Pack

4-23

Big-Endian Byte Order Counted from the Least Significant Bit to the
Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte
boundaries, to generate code with Embedded Coder you must check Support

4 CAN Utility Blocks

4-24

long long under Device Details in the Hardware Implementation pane of the
Configuration Parameters dialog.

Multiplex type
Specify how the block packs the signals into the message at each timestep:

• Standard: The signal is packed at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can

specify only one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode

signal) at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in
every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block packs Signal-B
along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block packs Signal-C
along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the
Multiplexed signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be
Multiplexed. The value you provide here must match the Multiplexor signal
value at run time for the block to pack the Multiplexed signal. The Multiplex
value must be a positive integer or zero.

 CAN FD Pack

4-25

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the
raw value packed in the message. See “Conversion Formula” on page 4-26 to
understand how physical values are converted to raw values packed into a message.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the
raw value packed in the message. See “Conversion Formula” on page 4-26 to
understand how physical values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and
Inf, respectively. For CANdb specified signals, these settings are read from the
CAN database. For manually specified signals, you can specify the minimum and
maximum physical value of the signal. By default, these settings do not clip signal
values that exceed them.

Conversion Formula
The conversion formula is

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal, and raw_value is the packed
signal value.

See Also
Blocks
CAN FD Configuration | CAN FD Transmit | CAN FD Unpack

Introduced in R2018a

4 CAN Utility Blocks

4-26

CAN FD Unpack
Unpack individual signals from CAN FD messages

Library
Vehicle Network Toolbox: CAN FD Communication

Description
The CAN FD Unpack block unpacks a CAN FD message into signal data using the
specified output parameters at every timestep. Data is output as individual signals.

Note To use this block, you also need a license for Simulink software.

The CAN FD Unpack block has one output port by default. The number of output ports is
dynamic and depends on the number of signals you specify for the block to output. For
example, if your block has four signals, it has four output ports.

Other Supported Features
The CAN FD Unpack block supports

• The use of Simulink Accelerator mode. Using this feature, you can speed up the
execution of Simulink models. For more information, see “Acceleration” (Simulink).

• Code generation to deploy models to targets.

 CAN FD Unpack

4-27

Note Code generation is not supported if your signal information consists of signed or
unsigned integers greater than 32 bits long.

Dialog Box
Use the Function Block Parameters dialog box to select your message unpacking
parameters.

Parameters
Data to be output as

Select your data signal:

• raw data: Output data as a uint8 vector array. If you select this option, you only
specify the message fields. The other signal parameter fields are unavailable. This
option opens only one output port on your block.

• manually specified signals: Allows you to specify data signals. If you select this
option, use the Signals table to create your signals message manually.

The number of output ports on your block depends on the number of signals you
specify. For example, if you specify four signals, your block has four output ports.

• CANdb specified signals: Allows you to specify a CAN database file that contains
data signals. If you select this option, select a CANdb file.

The number of output ports on your block depends on the number of signals
specified in the CANdb file. For example, if the selected message in the CANdb file
has four signals, your block has four output ports.

Note For manually or CANdb specified signals, the default output signal data type is
double. To specify other types, use a Signal Specification block. This allows the block to
support the following output signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point types.

CANdb file
This option is available if you specify that your data is input via a CANdb file in the
Data to be output as list. Click Browse to find the CANdb file on your system. The

4 CAN Utility Blocks

4-28

messages and signal definitions specified in the CANdb file populate the Message
section of the dialog box. The signals specified in the CANdb file populate Signals
table.

Note File names that contain non-alphanumeric characters such as equal signs,
ampersands, and so forth are not valid CAN database file names. You can use periods
in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Message list
This option is available if you specify that your data is to be output as a CANdb file in
the Data to be output as list and you select a CANdb file in the CANdb file field.
You can select the message that you want to view. The Signals table then displays the
details of the selected message.

Message
Name

Specify a name for your message. The default is Msg. This option is available if you
choose to output raw data or manually specify signals.

Protocol mode
Specify the message protocol mode as CAN FD or CAN.

Identifier type
Specify whether your message identifier is a Standard or an Extended type. The
default is Standard. A standard identifier is an 11-bit identifier and an extended
identifier is a 29-bit identifier. This option is available if you choose to output raw data
or manually specify signals. For CANdb-specified signals, the Identifier type inherits
the type from the database.

Identifier
Specify your message ID. This number must be a integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. If you
specify –1, the block unpacks the messages that match the length specified for the
message. You can also specify hexadecimal values using the hex2dec function. This
option is available if you choose to output raw data or manually specify signals.

 CAN FD Unpack

4-29

Length (bytes)
Specify the length of your message. For CAN messages the value can be 0-8 bytes; for
CAN FD the value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using
CANdb specified signals for your output data, the CANdb file defines the length
of your message. This option is available if you choose to output raw data or manually
specify signals.

Signals Table
This table appears if you choose to specify signals manually or define signals using a
CANdb file.

If you are using a CANdb file, the data in the file populates this table automatically and
you cannot edit the fields. To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals manually in this table.
Each signal you create has the following values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays
this name. The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from
the start of the message data. For CAN the start bit must be an integer from 0
through 63, for CAN FD 0 through 511, within the number of bits in the message.
(Note that message length is specified in bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an
integer from 1 through 64. The sum of all the signal lengths in a message is limited to
the number of bits in the message length; that is, all signals must cumulatively fit
within the length of the message. (Note that message length is specified in bytes and
signal length in bits.)

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count
bits from the start, which is the least significant bit, to the most significant bit,
proceeding to the next higher byte as you cross a byte boundary. For example, if

4 CAN Utility Blocks

4-30

you pack one byte of data in little-endian format, with the start bit at 20, the data
bit table resembles this figure.

Little-Endian Byte Order Counted from the Least Significant Bit to the
Highest Address

• BE: Where the byte order is in big-endian format (Motorola). In this format you
count bits from the start, which is the least significant bit, to the most significant
bit, proceeding to the next lower byte as you cross a byte boundary. For example,
if you pack one byte of data in big-endian format, with the start bit at 20, the data
bit table resembles this figure.

 CAN FD Unpack

4-31

Big-Endian Byte Order Counted from the Least Significant Bit to the
Lowest Address

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte
boundaries, to generate code with Embedded Coder you must check Support

4 CAN Utility Blocks

4-32

long long under Device Details in the Hardware Implementation pane of the
Configuration Parameters dialog.

Multiplex type
Specify how the block unpacks the signals from the message at each timestep:

• Standard: The signal is unpacked at each timestep.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can

specify only one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal

(mode signal) at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with the following values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard N/A
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor N/A

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in
every timestep.

• If the value of Signal-D is 1 at a particular timestep, then the block unpacks
Signal-B along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is 0 at a particular timestep, then the block unpacks
Signal-C along with Signal-A and Signal-D in that timestep.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the
Multiplexed signals in that timestep.

Multiplex value
This option is available only if you have selected the Multiplex type to be
Multiplexed. The value you provide here must match the Multiplexor signal
value at run time for the block to unpack the Multiplexed signal. The Multiplex
value must be a positive integer or zero.

 CAN FD Unpack

4-33

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical
value (signal value). See “Conversion Formula” on page 4-35 to understand how
unpacked raw values are converted to physical values.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the
unpacked raw value. See “Conversion Formula” on page 4-35 to understand how
unpacked raw values are converted to physical values.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity)
and Inf, respectively. For CANdb specified signals, these settings are read from the
CAN database. For manually specified signals, you can specify the minimum and
maximum physical value of the signal. By default, these settings do not clip signal
values that exceed them.

Output Ports
Selecting an Output ports option adds an output port to your block.

Output identifier
Select this option to output a message identifier. The data type of this port is uint32.

Output remote
(Disabled for CAN FD protocol.) Select this option to output the message remote
frame status. This option adds a new output port to the block. The data type of this
port is uint8.

Output timestamp
Select this option to output the message time stamp. This option adds a new output
port to the block. The data type of this port is double.

Output length
Select this option to output the length of the message in bytes. This option adds a new
output port to the block. The data type of this port is uint8.

Output error
Select this option to output the message error status. This option adds a new output
port to the block. The data type of this port is uint8.

4 CAN Utility Blocks

4-34

Output status
Select this option to output the message received status. The status is 1 if the block
receives new message and 0 if it does not. This option adds a new output port to the
block. The data type of this port is uint8.

Output Bit Rate Switch (BRS)
(Disabled for CAN protocol.) Select this option to output the message bitrate switch.
This option adds a new output port to the block. The data type of this port is boolean.

Output Error Status Indicator (ESI)
(Disabled for CAN protocol.) Select this option to output the message error status.
This option adds a new output port to the block. The data type of this port is boolean.

Output Data Length Code (DLC)
(Disabled for CAN protocol.) Select this option to output the message data length.
This option adds a new output port to the block. The data type of this port is double.

If you do not select an Output ports option, the number of output ports on your block
depends on the number of signals you specify.

Conversion Formula
The conversion formula is

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled
signal value.

See Also
Blocks
CAN FD Configuration | CAN FD Receive | CAN FD Pack

Introduced in R2018a

 CAN FD Unpack

4-35

Model-Based Ethernet
Communications Support

5

Model-Based Ethernet Communications
In this section...
“What Is Model-Based Ethernet Communications?” on page 5-2
“Ethernet Hardware” on page 5-2
“PCI Bus and Slot Numbers” on page 5-3
“MAC Addresses” on page 5-3
“Network Buffer Pointers” on page 5-4
“Filter Type and Filter Address Blocks” on page 5-4
“Execution Priority” on page 5-4
“ Simulink Real-Time Ethernet Block Library” on page 5-4

What Is Model-Based Ethernet Communications?
The Simulink Real-Time software supports communication from the target computer to
other systems or devices using raw Ethernet (Ethernet packets). Raw Ethernet is a direct
method to send and receive packets with the real-time application using the Ethernet
protocol. To transfer data using Ethernet packets, you must manually create Ethernet
frames. This topic assumes that you are knowledgeable about the IEEE® 802.3 standard.

By itself, raw Ethernet does not implement the TCP/IP or UDP standards. For information
about modeling protocols built upon raw Ethernet, see “Real-Time UDP”.

Ethernet Hardware
Before you start, provide a dedicated Ethernet card on your target computer. A dedicated
Ethernet card is to be used only for model-based Ethernet communications and not for
communication between the development and target computers. Therefore, your target
computer must have at least two Ethernet cards, one to connect the development and
target computers, and one for model-based Ethernet communication. The Simulink Real-
Time model-based Ethernet communication blocks support selected members of the
following Intel (Vendor ID 0x8086) chip families:

• Intel 8255X
• Intel Gigabit

5 Model-Based Ethernet Communications Support

5-2

PCI Bus and Slot Numbers
To use the model-based Ethernet blocks, specify the PCI bus and slot number of the
dedicated Ethernet card in the Real-Time Ethernet Configuration block. To identify which
Ethernet card is available:

1 Boot the target computer with which you want to perform model-based Ethernet
communications.

2 Examine the startup screen on the target computer. Note the PCI bus and slot
information on the bottom right of the status window. This information represents the
Ethernet card that is installed on the target computer for dedicated communication
between the development and target computers.

3 In the MATLAB Command Window, type

tg = slrt;
getPCIInfo(tg, 'ethernet')

This command determines which Ethernet cards are installed in the target computer.
4 In the list, find the Ethernet card with a bus and slot different from the bus and slot

that are displayed on the target computer monitor.
5 Note the PCI bus and slot of the free Ethernet card. Use the card for model-based

Ethernet communications.

MAC Addresses
Several Ethernet blocks require you to enter MAC addresses. The MAC address must be
vector-based. To obtain the vector-based version of a MAC address, use the macaddr
command. This command converts a character vector-based MAC address to a vector-
based one. For example:

macaddr('01:23:45:67:89:ab')

[1 35 69 103 137 171]

When an Ethernet block requires a MAC address, you can enter either of the following in
the address field:

• Command macaddr('MAC address character vector'), for example:

macaddr('01:23:45:67:89:ab')

 Model-Based Ethernet Communications

5-3

• Vector-based output from the macaddr command, for example:

[1 35 69 103 137 171]

Network Buffer Pointers
The Simulink Real-Time Ethernet block library uses pointers to refer to network buffers.
Blocks can pass pointers to these buffers as single uint32pointers. They can also refer to
a chain of network buffer packets.

Filter Type and Filter Address Blocks
The Filter Type and Filter Address blocks accept a chain of network buffers as input.
These blocks specify criteria that the drivers use while parsing each buffer on the chain.
Based on these criteria, the drivers either pass the packets through the port or drop the
packets. When using these blocks, create your models with filter blocks to pass data only
from expected sources.

Execution Priority
The raw Ethernet blocks have the following execution priority, from first to last:

1 Real-Time Ethernet Configuration
2 The remaining raw Ethernet and network buffer library blocks

Simulink Real-Time Ethernet Block Library
To access the Simulink Real-Time Ethernet library blocks, in the Simulink Real-Time block
library, double-click Ethernet. The Simulink Real-Time Ethernet library is displayed.

The Simulink Real-Time Ethernet library contains commonly used Ethernet blocks at the
top level of the library. Use these blocks to create your models.

The Ethernet library also has a sublibrary, Network Buffers, which contains blocks
specific to the management of Ethernet network buffers. The blocks in this sublibrary are
core blocks for use in creating other subsystems. However, the top-level Ethernet blocks
provide enough functionality for model-based Ethernet communications.

5 Model-Based Ethernet Communications Support

5-4

See Also

More About
• “Real-Time Transmit and Receive over Ethernet”
• “Filtering on MAC Address”
• “Filtering on EtherType”

 See Also

5-5

Ethernet Blocks

6

Real-Time Ethernet Configuration
Configure network interface for real-time raw Ethernet communication
Library: Simulink Real-Time / Ethernet

Description
To initialize the network and network buffers, use the Real-Time Ethernet Configuration
block.

Parameters
Device

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board.

Programmatic Use
Block Parameter: ID

Driver — Drivers for chip families that this block supports
Intel 8255X (default) | Intel Gigabit

Identifies the drivers for the development computer Ethernet chip families that the block
supports.

Programmatic Use
Block Parameter: Driver

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

6 Ethernet Blocks

6-2

Programmatic Use
Block Parameter: Bus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: Slot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: Function

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: SampleTime

Addressing

Address source — Source of MAC address
EEPROM (default) | Specify

From the list, select:

• EEPROM — The block gets the Ethernet card MAC address that is built into the
Ethernet card.

• Specify — Explicitly enter a MAC address for the Ethernet card.

To see the MAC parameter, select Specify.

Programmatic Use
Block Parameter: AddressSource

 Real-Time Ethernet Configuration

6-3

MAC — MAC address for Ethernet card
macaddr('00:00:00:00:00:00') (default) | macaddr('xx:xx:xx:xx:xx:xx)

Enter the MAC address for the Ethernet card.

To make this parameter visible, set Address source to Specify.

Programmatic Use
Block Parameter: MAC

Rx promiscuous — Receive all packets regardless of their destination address
off (default) | on

To direct the model to receive all packets regardless of their destination address, select
this check box.

Programmatic Use
Block Parameter: RxPromiscuous

Multicast address list — List of multicast address vectors
{} (default) | cell array

Enter a list of multicast address vectors as a cell array. The Ethernet Rx block uses these
addresses and the broadcast and unicast addresses.

Programmatic Use
Block Parameter: Multicast

Advanced

Rx bad frames — Receive all packets, including erroneous ones
off (default) | on

To direct the model to receive all packets, including erroneous ones (such as CRC error
and alignment error), select this check box.

Programmatic Use
Block Parameter: RxBad

Rx short frames — Receive all packets, including short ones
off (default) | on

To direct the model to receive all packets, including frames that are less than 64 bytes in
length, select this check box.

6 Ethernet Blocks

6-4

The Intel Gigabit Ethernet controller does not distinguish between bad packets and short
packets. Therefore, selecting either Rx Bad Frames or Rx Short Frames produces the
same results for Driver type Intel Gigabit.

Programmatic Use
Block Parameter: RxShort

Max MTU — Maximum transmission unit number
1518 (default) | numeric

Specify a maximum transmission unit number (MTU). With this parameter, you can
specify a smaller maximum transmission unit number.

Programmatic Use
Block Parameter: MaxMTU

Tx threshold — Determine when device begins DMA on packets from memory
224 (default) | numeric

Enter a value that controls when the Ethernet device begins to perform direct memory
access (DMA) on packets from memory.

This parameter applies only to Driver type Intel 8255X. Before you change this
parameter, see Intel 8255x 10/100 Mbps Ethernet Controller Family — Open Source
Software Developer Manual.

Programmatic Use
Block Parameter: TxThreshold

Tx buffers — Maximum number of queued transmit buffers
128 (default) | numeric

Enter the maximum number of buffers that the driver holds in the queue before it drops
new transmit requests.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: TxBuffers

Rx buffers — Maximum number of queued receive buffers
64 (default) | numeric

 Real-Time Ethernet Configuration

6-5

Enter the maximum number of buffers that the driver holds in the queue before it drops
new receive packets.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: RxBuffers

Display tuning information — Display statistical data
off (default) | on

To enable a display of statistical data collected during the run of the model, select this
check box.

Programmatic Use
Block Parameter: ShowTune

See Also

External Websites
www.iso.org

Introduced in R2014b

6 Ethernet Blocks

6-6

https://www.iso.org

Create Ethernet Packet
Create Ethernet packet based on the MAC address and EtherType provided
Library: Simulink Real-Time / Ethernet

Description
To create the Ethernet packets that you want to transfer, use the Create Ethernet Packet
block.

Ports

Input
Data — Payload data for Ethernet packet
vector
Data Types: uint8

Length — Number of bytes in data vector
scalar

Output
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

 Create Ethernet Packet

6-7

Parameters
Destination MAC — MAC address of the target computer to receive the data
macaddr(00:1B:21:85:37:6C) (default) | macaddr(xx:xx:xx:xx:xx:xx)

Enter the MAC address of the target computer that receives the data.

Programmatic Use
Block Parameter: DstMac

EtherType (use 0 for length) — EtherType or the use of Ethernet length
hex2dec('0000') (default) | numeric

Enter a value that represents either the EtherType or the use of Ethernet length:

• EtherType — If you are creating Ethernet packets that use EtherType values, to
specify which prototype the Ethernet frame transfers, enter a valid EtherType value.

• Ethernet length — If you are creating Ethernet packets that use Ethernet lengths,
enter 0.

Programmatic Use
Block Parameter: EtherType

See Also
Extract Ethernet Packet

External Websites
www.iso.org

Introduced in R2008b

6 Ethernet Blocks

6-8

https://www.iso.org

Ethernet Init
Initialize network card for real-time raw Ethernet communication
Library: Simulink Real-Time / Ethernet

Description
To initialize the Ethernet communication channel, use the Ethernet Init block. Use a
separate Ethernet Init block for each Ethernet board.

Note The Ethernet Init and Buffer Mngmt blocks are combined in the Real-Time Ethernet
Configuration block. For new development, use this block.

Parameters
Device

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board.

Programmatic Use
Block Parameter: ID

Driver — Drivers for chip families that this block supports
Intel 8255X (default) | Intel Gigabit

Identifies the drivers for the development computer Ethernet chip families that the block
supports.

Programmatic Use
Block Parameter: Driver

 Ethernet Init

6-9

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.
Programmatic Use
Block Parameter: Bus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.
Programmatic Use
Block Parameter: Slot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.
Programmatic Use
Block Parameter: Function

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.
Programmatic Use
Block Parameter: SampleTime

Addressing

Address source — Source of MAC address
EEPROM (default) | Specify

From the list, select:

• EEPROM — The block gets the Ethernet card MAC address that is built into the
Ethernet card.

• Specify — Explicitly enter a MAC address for the Ethernet card.

To see the MAC parameter, select Specify.

6 Ethernet Blocks

6-10

Programmatic Use
Block Parameter: AddressSource

MAC — MAC address for Ethernet card
macaddr('00:00:00:00:00:00') (default) | macaddr('xx:xx:xx:xx:xx:xx)

Enter the MAC address for the Ethernet card.

To make this parameter visible, set Address source to Specify.

Programmatic Use
Block Parameter: MAC

Rx promiscuous — Receive all packets regardless of their destination address
off (default) | on

To direct the model to receive all packets regardless of their destination address, select
this check box.

Programmatic Use
Block Parameter: RxPromiscuous

Multicast address list — List of multicast address vectors
{} (default) | cell array

Enter a list of multicast address vectors as a cell array. The Ethernet Rx block uses these
addresses and the broadcast and unicast addresses.

Programmatic Use
Block Parameter: Multicast

Advanced

Rx bad frames — Receive all packets, including erroneous ones
off (default) | on

To direct the model to receive all packets, including erroneous ones (such as CRC error
and alignment error), select this check box.

Programmatic Use
Block Parameter: RxBad

Rx short frames — Receive all packets, including short ones
off (default) | on

 Ethernet Init

6-11

To direct the model to receive all packets, including frames that are less than 64 bytes in
length, select this check box.

The Intel Gigabit Ethernet controller does not distinguish between bad packets and short
packets. Therefore, selecting either Rx Bad Frames or Rx Short Frames produces the
same results for Driver type Intel Gigabit.

Programmatic Use
Block Parameter: RxShort

Max MTU — Maximum transmission unit number
1518 (default) | numeric

Specify a maximum transmission unit number (MTU). With this parameter, you can
specify a smaller maximum transmission unit number.

Programmatic Use
Block Parameter: MaxMTU

Tx threshold — Determine when device begins DMA on packets from memory
224 (default) | numeric

Enter a value that controls when the Ethernet device begins to perform direct memory
access (DMA) on packets from memory.

This parameter applies only to Driver type Intel 8255X. Before you change this
parameter, see Intel 8255x 10/100 Mbps Ethernet Controller Family — Open Source
Software Developer Manual.

Programmatic Use
Block Parameter: TxThreshold

Tx buffers — Maximum number of queued transmit buffers
128 (default) | numeric

Enter the maximum number of buffers that the driver holds in the queue before it drops
new transmit requests.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: TxBuffers

6 Ethernet Blocks

6-12

Rx buffers — Maximum number of queued receive buffers
64 (default) | numeric

Enter the maximum number of buffers that the driver holds in the queue before it drops
new receive packets.

The number of buffers must be a multiple of 8.

Programmatic Use
Block Parameter: RxBuffers

Display tuning information — Display statistical data
off (default) | on

To enable a display of statistical data collected during the run of the model, select this
check box.

Programmatic Use
Block Parameter: ShowTune

See Also
Real-time Ethernet Configuration

Topics
“Real-Time Transmit and Receive over Ethernet”

External Websites
www.iso.org

Introduced in R2008b

 Ethernet Init

6-13

https://www.iso.org

Ethernet Rx
Receive data over Ethernet network
Library: Simulink Real-Time / Ethernet

Description
To receive Ethernet packets and to filter on the received packets, use the Ethernet Rx
block. You can filter packets by EtherType or length. You can use multiple Ethernet Rx
blocks with the same device ID. However, you must configure each block to filter a unique
set of packets.

Ports

Output
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Parameters
Rx

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board. Select the same
Device ID as the ID that you selected for the Real-Time Ethernet Configuration block.

6 Ethernet Blocks

6-14

Programmatic Use
Block Parameter: ID

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: SampleTime

Filter

Filter criteria — Filter on EtherTypes or Ethernet lengths
Receive all unmatched types [0 to 65535] (default) | Receive unmatched
lengths [0 to 1500] | Receive unmatched EtherTypes [150 to 65535] |
Specify types to match

From the list, select how you want to filter on EtherTypes (Ethernet II framing standard)
or Ethernet lengths (IEEE 802.3 framing standard).

• Receive all unmatched types [0 to 65535] — Output all unmatched packets,
both Ethernet II framing and IEEE 802.3 framing standards.

• Receive unmatched lengths [0 to 1500] — Output all packets with IEEE 802.3
framing standard.

• Receive unmatched EtherTypes [150 to 65535] — Output all output packets
with Ethernet II framing standard.

• Specify types to match — Explicitly enter the EtherTypes to output.

To see the Receive these types (vector of types 0–65535) parameter, select Specify
types to match.

Programmatic Use
Block Parameter: MatchOther
Block Parameter: MatchLength

Receive these types (vector of types 0–65535) — EtherTypes to output
[hex2dec('0000')] (default) | vector

Enter a vector of EtherTypes that you want to output.

To make this parameter visible, set Filter criteria to Specify types to match.

 Ethernet Rx

6-15

Programmatic Use
Block Parameter: EtherType

See Also
Ethernet Tx

External Websites
www.iso.org

Introduced in R2008b

6 Ethernet Blocks

6-16

https://www.iso.org

Ethernet Tx
Transmit data over Ethernet network
Library: Simulink Real-Time / Ethernet

Description
To send network packets, use the Ethernet Tx block.

Ports
Input
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Parameters
Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board. Select the same
Device ID as the ID that you selected for the Real-Time Ethernet Configuration block.
Programmatic Use
Block Parameter: ID

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

 Ethernet Tx

6-17

Programmatic Use
Block Parameter: SampleTime

See Also
Ethernet Rx

External Websites
www.iso.org

Introduced in R2008b

6 Ethernet Blocks

6-18

https://www.iso.org

Extract Ethernet Packet
Extract data from Ethernet packet
Library: Simulink Real-Time / Ethernet

Description
To extract data from an Ethernet packet, use the Extract Ethernet Packet block.

Ports

Input
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Output
Data — Packet payload data
vector
Data Types: uint8

Dst — Ethernet address of packet destination
'xxx.xxx.xxx.xxx'

Src — Ethernet address of packet source
'xxx.xxx.xxx.xxx'

Type — EtherType of data
scalar

 Extract Ethernet Packet

6-19

Length — Number of bytes in data vector
numeric

Parameters
Data Size — Number of bytes to extract
1500 (default) | numeric

Enter the data size (in bytes) for the data that you want to extract from an Ethernet
packet.

Programmatic Use
Block Parameter: EthernetDataSize

See Also
Create Ethernet Packet

External Websites
www.iso.org

Introduced in R2008b

6 Ethernet Blocks

6-20

https://www.iso.org

Filter Address
Filter Ethernet packets based on MAC address
Library: Simulink Real-Time / Ethernet

Description
To filter network buffer packets by their MAC addresses, use the Filter Address block. See
“Filter Type and Filter Address Blocks” on page 5-4 for cautions on setting the
parameters for this block.

Ports

Input
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Output
Match [Addr (#)] — Network buffer containing packets that match filter
vector

If you specify one MAC address, one port appears with the name Match. The block directs
packets with this MAC address to port Match.

If you specify more than one MAC address, multiple ports appear, matched to the values
in parameter MAC Address. The block directs packets with the first address to Match
Addr (1), with the second address to Match Addr (2), and so on.

 Filter Address

6-21

Dependency

The port count depends on how many MAC addresses appear in parameter MAC
Address.

Remainder — Network buffer chain containing packets that do not match filter
vector of network buffers

Packets that do not meet the filter criteria appear at this port.

Dependency

To activate this port, clear Drop non-matches.

Parameters
MAC Address — MAC addresses to filter
{[macaddr('00:00:00:00:00:00')]} (default) | cell array

Enter a cell array that contains the MAC addresses for the filter.

Programmatic Use
Block Parameter: Address

Drop non-matches — Discard packets that do not match filter criteria
'off' (default) | 'on'

To discard packets that do not match the filter criteria, select this parameter.

To output packets that do not match the filter criteria, clear this parameter.

Programmatic Use
Block Parameter: Drop

Filter on destination address — Filter packets that match destination
address
'off' (default) | 'on'

To filter addresses for the source address, clear this check box (default).

To filter addresses for the destination address, select this check box.

6 Ethernet Blocks

6-22

Programmatic Use
Block Parameter: Dst

See Also
Filter Type

Topics
“Filter Type and Filter Address Blocks” on page 5-4

External Websites
www.iso.org

Introduced in R2008b

 Filter Address

6-23

https://www.iso.org

Filter Type
Filter Ethernet packets based on EtherType
Library: Simulink Real-Time / Ethernet

Description
To filter network buffer packets by their EtherType values, use the Filter Type block. See
“Filter Type and Filter Address Blocks” on page 5-4 for cautions on setting the
parameters for this block.

Ports

Input
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Output
Match Length — Network buffer chain containing packets that match length
filter
vector of network buffers

One port receives packets with EtherType values within 1–1500.

Dependency

To activate this port, select parameter Match Length (1-1500).

6 Ethernet Blocks

6-24

Match [Type (#)] — Network buffer chain containing packets that match filter
vector of network buffers

If you specify one Ethertype, one port appears with the name Match. The block directs
packets with this EtherType to port Match.

If you specify more than one EtherType, multiple ports appear, matched to the values in
parameter EtherType. The block directs packets with the first EtherType to Match
Type (1), with the second EtherType to Match Type (2), and so on.

Dependency

The port count depends on how many EtherTypes appear in parameter EtherType.

Remainder — Network buffer chain containing packets that do not match filter
vector of network buffers

Packets that do not meet the filter criteria appear at this port.

Dependency

To activate this port, clear Drop non-matches.

Parameters
Match Length (1-1500) — Match packets with EtherType values within 1–1500
'on' (default) | 'off'

To match packets whose EtherType values fall within the range 1–1500, select this check
box.

Programmatic Use
Block Parameter: EtherLength

EtherType — EtherTypes on which to filter
[hex2dec('0000')] (default) | vector

Enter a vector of EtherTypes on which you want to filter.

Programmatic Use
Block Parameter: EtherType

 Filter Type

6-25

Drop non-matches — Discard packets that do not match filter criteria
'off' (default) | 'on'

To discard packets that do not match the filter criteria, select this parameter.

To output packets that do not match the filter criteria, clear this parameter.

Programmatic Use
Block Parameter: Drop

See Also
Filter Type

Topics
“Filter Type and Filter Address Blocks” on page 5-4

External Websites
www.iso.org

Introduced in R2008b

6 Ethernet Blocks

6-26

https://www.iso.org

Header Extract
Extract header data from Ethernet packet
Library: Simulink Real-Time / Ethernet

Description
To extract the header data of network buffer packets, use the Header Extract block.

Ports

Input
Network Buffer — Network buffer containing packet data
scalar

The parameter is a reference to the network buffer.

Output
Data — Packet payload data
vector
Data Types: uint8

Dst — Ethernet address of packet destination
'xxx.xxx.xxx.xxx'

Src — Ethernet address of packet source
'xxx.xxx.xxx.xxx'

Type — EtherType of data
scalar

 Header Extract

6-27

Length — Number of bytes in data vector
numeric

See Also
Extract Ethernet Packet

External Websites
www.iso.org

Introduced in R2008b

6 Ethernet Blocks

6-28

https://www.iso.org

Network Buffer Library for Model-
Based Ethernet Communications
Support

7

Network Buffer Blocks
The Ethernet library includes a sublibrary, Network Buffers, that contains blocks for
managing Ethernet network buffers. The blocks in this sublibrary are core blocks that you
can use to create other subsystems.

The Ethernet drivers use a set of buffers, Ethernet network buffers, that it uses to store
data that is sent and received over the network. The block organizes these buffers into
several pools, each with different values of maximum data size. The buffers include
information about the data itself. The block allocates the buffer pools during initialization
and does not change the buffer pools during run time. When the block sends, receives, or
processes data, it allocates a buffer. When the operation is done, it frees the buffer.

You can control the number of buffers allocated for each allowable value of data size by
using the Buffer Mngmt block parameter Buffer pool sizes. Allocate enough buffers for
the maximum number of data packets that you anticipate receiving, sending, or
processing at one time. You can send and receive more data by allocating many more
buffers. However, each allocation reserves more memory, which you cannot then use for
other purposes. Running out of buffers means that data cannot be sent and received until
the block frees allocated buffers.

Monitor the buffer pool statistics at run time to find the optimal values that an application
requires. To monitor the buffer pool statistics, select the Display tuning information
check box in the Buffer Mngmt block parameters dialog box.

See Also
Buffer Mngmt

7 Network Buffer Library for Model-Based Ethernet Communications Support

7-2

Network Buffer Library Blocks

8

Buffer Mngmt
Initialize network buffer pools

Library
Simulink Real-Time Library for Ethernet

Description
To initialize network buffers, use the Buffer Mngmt block.

Block Parameters
This block has two tabs, Main and Advanced.

Main
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

Advanced
Modify the values of the parameters in this tab only if you have a thorough understanding
of the Ethernet protocol. Changing the values of these parameters can change the
behavior of your system.

Buffer pool sizes (256, 512, 1024, 2048)
Enter a vector of the number of buffers for each pool size (256, 512, 1024, or 2048).

Display tuning information
Select this check box to enable a display of statistical data collected during the run of
the model.

8 Network Buffer Library Blocks

8-2

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

 Buffer Mngmt

8-3

https://www.iso.org

Chain Size
Determine the number of network buffers in the chain

Library
Simulink Real-Time Library for Ethernet

Description
To determine the number of buffers that are on the chain, use the Chain Size block.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

8 Network Buffer Library Blocks

8-4

https://www.iso.org

Compose
Create a network buffer from raw input data

Library
Simulink Real-Time Library for Ethernet

Description
To create a network buffer, use the Compose block. This block creates a pointer to a
network buffer.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

 Compose

8-5

https://www.iso.org

Extract
Extract raw data from network buffer

Library
Simulink Real-Time Library for Ethernet

Description
To extract network buffer packets, use the Extract block.

Block Parameters
Packet size (-1: inherit)

Enter the packet size for the network buffer packet to extract. Enter -1 (default) to
inherit the packet size.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

8 Network Buffer Library Blocks

8-6

https://www.iso.org

Link
Link vector of network buffers into a chain

Library
Simulink Real-Time Library for Ethernet

Description
To convert a vector of network buffer signals into a linked list of signals, use the Link
block.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

 Link

8-7

https://www.iso.org

Manage
Output or buffer packets as indicated by the parameters

Library
Simulink Real-Time Library for Ethernet

Description
Output or buffer packets as indicated by the parameters.

Block Parameters
Chain size

Specify the queuing (output) behavior of the block as packets are received.

Value Description
inf Output all packets. No queuing occurs.
0 Delete all packets, no packets pass through.
Positive
number, C

Pass through the first C packets

Negative
number, C

Pass through the last C packets

Buffer size
Specify the buffering behavior of the block as packets are received.

Value Description
inf Buffer all remaining packets. Delete no packets.
0 Do not buffer packets. Delete all remaining packets.

8 Network Buffer Library Blocks

8-8

Value Description
Positive
number, B

Buffer the remaining first B packets.

Negative
number, B

Buffer the remaining last B packets.

Threshold
Enter a minimum threshold before which this block begins to output buffers.

Value Description
0 Specifies no threshold.
Negative
number,T

Delay passing buffer packets until T packets are buffered.

Positive
number, T

Passes buffer packets if T packets are buffered.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2015a

 Manage

8-9

https://www.iso.org

Merge
Merge the incoming network buffer chains into one

Library
Simulink Real-Time Library for Ethernet

Description
To combine signal pointers to a linked list, use the Merge block.

Block Parameters
Number of inputs

Enter the number of network buffer signal pointers to combine into a linked list.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

8 Network Buffer Library Blocks

8-10

https://www.iso.org

Split
Split a network buffer chain

Library
Simulink Real-Time Library for Ethernet

Description
To separate a linked list of buffer pointers into separate individual pointers, use the Split
block.

Block Parameters
Number of outputs

Enter the number of pointers the input linked list should be separated into.

• If the number of buffers is the same as this value, this block splits them and
outputs them in the order they appear in the vector, or in reverse order
(depending on the setting of the Split in reverse order parameter).

• If the number of buffers is less than Number of outputs, the block outputs zeros
(0s) for the extra output ports.

• If the number of buffers is greater than Number of outputs, the block either
deletes the extra buffers, or chains the remaining buffers together (depending on
the setting of the Allow chaining for last signal parameter).

Split in reverse order
Select this check box to split out the network buffers in the reverse order in which
they are received.

Allow chaining for last signal
Select this check box to chain together remaining network buffers. There might be
remaining buffers if the incoming linked list contains more buffers than the number in
Number of outputs.

 Split

8-11

Clear this check box to delete the remaining buffers.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

8 Network Buffer Library Blocks

8-12

https://www.iso.org

Unlink
Unlink a chain into a vector of network buffers

Library
Simulink Real-Time Library for Ethernet

Description
To convert a linked list of signals into a vector of network buffer signal, use the Unlink
block.

Block Parameters
Vector length (-1: inherit)

Enter the number of signals in the linked list of signals that you want to separate.
Enter -1 (default) to inherit the vector length.

See Also

Topics
“Network Buffer Blocks” on page 7-2

External Websites
www.iso.org

Introduced in R2008b

 Unlink

8-13

https://www.iso.org

Model-Based EtherCAT
Communications Support

• “EtherCAT Init” on page 9-2
• “Modeling EtherCAT Networks” on page 9-3
• “Install TwinCAT 3” on page 9-6
• “Hardware Setup Requirements for TwinCAT 3” on page 9-7
• “Configure EtherCAT Network with TwinCAT 3” on page 9-8
• “Install EtherCAT Network for Execution” on page 9-11
• “Configure EtherCAT Master Node Model” on page 9-12
• “EtherCAT Distributed Clock Algorithm” on page 9-18
• “Fixed-Step Size Derivation” on page 9-24
• “EtherCAT Protocol Mapping” on page 9-25
• “EtherCAT Configurator Component Mapping” on page 9-26
• “EtherCAT Data Types” on page 9-27
• “EtherCAT Init Block DC Error Values” on page 9-28
• “EtherCAT Error Codes” on page 9-29

9

EtherCAT Init

9 Model-Based EtherCAT Communications Support

9-2

Modeling EtherCAT Networks
Ethernet for Control Automation (EtherCAT) is an open Ethernet network protocol for
real-time distributed control, for example for automotive and industrial systems. The
EtherCAT protocol provides:

• Deterministic and fast cycle times
• Inexpensive I/O module cost

EtherCAT networks consist of one master node and several slave nodes. The Simulink
Real-Time EtherCAT sublibrary supports only the master node of an EtherCAT network.
You cannot emulate slave nodes using the blocks in the EtherCAT sublibrary. However,
you can use these blocks to prototype multiple EtherCAT networks with multiple Ethernet
cards.

You model an EtherCAT network using one of the third-party EtherCAT configurators:
TwinCAT®3 from Beckhoff® or EC-Engineer from Acontis.

The Beckhoff ET9000 configurator is no longer supported.

To map the network model into a Simulink Real-Time model, become familiar with the
following mappings:

• “EtherCAT Protocol Mapping” on page 9-25
• “EtherCAT Configurator Component Mapping” on page 9-26

Blocks and Tasks
At a minimum, each EtherCAT model must contain an EtherCAT Init block. The EtherCAT
Init block contains a reference to an EtherCAT Network Information (ENI) file. The ENI
file describes the network, including the device variables of the network.

If you generate the configuration file with TwinCAT 3, use the software to create at least
one cyclic input/output task. Link this task to at least one input channel and one output
channel on each slave device. If you generate the file using Acontis EC-Engineer, the
software creates one default task linked to all slave device input/output channels.

When you know the input/output cycle ticks, set the Fixed-step size in the Model
Configuration Parameters dialog box to a value that is consistent with the following
constraints:

 Modeling EtherCAT Networks

9-3

• The cycle tick of all EtherCAT slave devices.
• The sample times of all other blocks in the Simulink model.

For more information, see “Fixed-Step Size Derivation” on page 9-24.

When you know the device variables that you are using in your model, add an EtherCAT
PDO Receive or EtherCAT PDO Transmit block for every EtherCAT device variable. When
you add these blocks to the model, the block obtains the list of device variables from the
configuration file in the EtherCAT Init block. When you specify a device variable in the
block dialog box, the software updates the block information with device variable
information from the configuration file.

To transmit CANopen over EtherCAT (CoE) information through your network, add SDO
Upload and SDO Download blocks to your model. The SDO blocks come in two types,
synchronous and asynchronous. From the EtherCAT perspective, there is little difference
in behavior of these types. The difference arises during the execution of the real-time
application. The Sync SDO blocks halt execution while they wait for a response. The
Async SDO blocks continue executing and poll the I/O module for a response.

To avoid a CPU overload, set the sample time for the synchronous SDO blocks to a value
at least three times that for the PDO blocks.

To track the state of the network or force the network into a particular state, add an
EtherCAT Get State or EtherCAT Set State block.

Order of Network Events
The EtherCAT Init block schedules network events in two phases:

1 Phase 1 — Reads data from EtherCAT variables from the last received frame into
EtherCAT PDO Receive blocks.

2 Either of the following blocks, in arbitrary order:

• EtherCAT PDO Receive — Processes data read from the last frame received from a
slave device.

• EtherCAT PDO Transmit — Buffers data to send in the next frame to a slave
device.

3 Each of the following blocks, in arbitrary order:

• EtherCAT Sync SDO Upload — Queues an SDO frame with new value, waits for
response.

9 Model-Based EtherCAT Communications Support

9-4

• EtherCAT Sync SDO Download — Queues an SDO frame with request for data,
waits for response.

• EtherCAT Async SDO Upload — Queues an SDO frame with new value, checks for
response, continues execution.

• EtherCAT Async SDO Download — Queues an SDO frame with request for data,
checks for response, continues execution.

Synchronous upload and download take at least three ticks of the fastest PDO
cycle tick to complete processing.

• EtherCAT Get State — Reads current state of EtherCAT network.
• EtherCAT Set State — Queues request to change current state of EtherCAT

network.
4 Phase 2 — Sends the PDO frames, followed by the next available queued SDO frames.

See Also
EtherCAT Async SDO Download | EtherCAT Async SDO Upload | EtherCAT Async
SSC/SoE Download | EtherCAT Async SSC/SoE Upload | EtherCAT Get State | EtherCAT
Init | EtherCAT PDO Receive | EtherCAT PDO Transmit | EtherCAT Set State | EtherCAT
Sync SDO Download | EtherCAT Sync SDO Upload | EtherCAT Sync SSC/SoE Download |
EtherCAT Sync SSC/SoE Upload

More About
• “Fixed-Step Size Derivation” on page 9-24
• “EtherCAT Protocol Mapping” on page 9-25
• “EtherCAT Configurator Component Mapping” on page 9-26
• “EtherCAT Data Types” on page 9-27
• “EtherCAT Init Block DC Error Values” on page 9-28

 See Also

9-5

Install TwinCAT 3
To install the EtherCAT network and configuration software, execute the following steps.
For requirements, see “Hardware Setup Requirements for TwinCAT 3” on page 9-7.

1 Install a dedicated, EtherCAT compatible Ethernet card on the development
computer.

2 Download or purchase the Beckhoff TwinCAT 3 configurator (www.beckhoff.com).

The Beckhoff ET9000 configurator is no longer supported.
3 Install Microsoft® Visual Studio® on your development computer.

TwinCAT 3 uses the Microsoft Visual Studio IDE desktop as its user interface. See the
TwinCAT 3 documentation for the required version.

4 Install the TwinCAT 3 software on your development computer.

The next task is “Configure EtherCAT Network with TwinCAT 3” on page 9-8.

See Also

External Websites
• www.beckhoff.com
• www.acontis.com/eng

9 Model-Based EtherCAT Communications Support

9-6

https://www.beckhoff.com
https://www.beckhoff.com
http://www.acontis.com/eng

Hardware Setup Requirements for TwinCAT 3
For both the development and target computers, the EtherCAT I/O module has the
following requirements:

• Each Ethernet card must be compatible with EtherCAT communication.
• To keep non EtherCAT traffic from interfering with the protocol timing, assign each

Ethernet card a static IP address and a nonroutable subnet.

For information on setting up the dedicated Ethernet card, see your network
administrator.

• On the target computer, install two Ethernet cards. Dedicate one card to linking the
development and target computers. Dedicate the other to model-based EtherCAT
communication.

• On the development computer, as a best practice, install two Ethernet cards in
addition to your local area network card. Dedicate one card to linking the development
and target computers. Dedicate the other to EtherCAT network configuration.

• Configure the development computer Ethernet card that you are using for EtherCAT to
enable only the Internet Protocol Version 4 (TCP/IPv4) driver. See the TwinCAT 3
documentation for information on manually creating an EtherCAT configuration file.

With only one card on the development computer, before configuring the EtherCAT
network, unplug the Ethernet link cable and plug in the EtherCAT network cable. Before
building and downloading the model, unplug the EtherCAT network cable, plug in the
Ethernet link cable, disable the EtherCAT filter, and restart your development computer.

 Hardware Setup Requirements for TwinCAT 3

9-7

Configure EtherCAT Network with TwinCAT 3
To configure the EtherCAT network using TwinCAT 3, execute the following steps.

This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

Before configuring the network, carry out the steps in “Install TwinCAT 3” on page 9-6.

Scan EtherCAT Network
The rest of this example assumes that your EtherCAT network consists of Beckhoff
EK1100, EL3062, and EL4002 modules connected in that order, followed by a terminator.

To scan an EtherCAT network with TwinCAT 3:

1 Connect your EtherCAT network to the development computer Ethernet port
dedicated to EtherCAT. Turn on the network.

2 Start Microsoft Visual Studio and create a TwinCAT 3 project.
3 In the TwinCAT menu, start the device scanner.

The scanner reports that new I/O devices have been found.
4 In the list of Ethernet devices that the scanner detects on the development computer,

select the Ethernet device into which you plugged your EtherCAT network.

If you do not see an Ethernet device identified as an EtherCAT device, check your
EtherCAT network configuration and power supply.

5 Scan for EtherCAT boxes on your network.

The scanner reports the EtherCAT devices on your network.
6 Disable free run mode.
7 In your TwinCAT project, check that the scanner downloaded the required

information about your EtherCAT devices.

Configure EtherCAT Master Node Data
Before configuring the master node of an EtherCAT network, scan the network with
TwinCAT.

To configure the master node, execute the following steps.

9 Model-Based EtherCAT Communications Support

9-8

Create EtherCAT Task

To create and configure an EtherCATtask:

1 In TwinCAT 3, add an item to your system task list.

Provide a name for the task, for example Task 1 and configure Task 1 as a task
with image.

2 In the task list, select Task 1 and set its cycle ticks value to a value in milliseconds,
such as 10 for 10 milliseconds.

3 Record the cycle tick in milliseconds.

In the Model Configuration Parameters dialog box, use the cycle tick to calculate a
value for the Fixed-step size (fundamental sample time) box. To allow Simulink to
calculate the sample time, select Auto.

Configure EtherCAT Task Inputs

To configure the task inputs:

1 In TwinCAT 3, under Term 1, access the nodes Term 2 and AI Standard Channel
1.

2 Drag the Value node of AI Standard Channel 1 to the Task 1 inputs.
3 Configure the Term 1 inputs as variables.
4 Link the AI Standard Channel 1 variable to Term 2.

Configure EtherCAT Task Outputs

To configure the task outputs:

1 In TwinCAT 3, under Term 1, access the nodes Term 3 and AO Outputs Channel
1.

2 Drag the Analog output node of AO Outputs Channel 1 to the Task 1 outputs.
3 Configure the Term 1 analog outputs as variables.
4 Link the Analog output variable to Term 3.

Configure EtherCAT Distributed Clocks

To configure the Term 3 distributed clock:

 Configure EtherCAT Network with TwinCAT 3

9-9

1 In TwinCAT 3, under Term 3, access the DC tab.
2 Change the DC operation mode to DC Synchron.

Export and Save EtherCAT Configuration with TwinCAT 3
The EtherCAT Network Information (ENI) file represents the master node of an EtherCAT
network. To create the ENI file, scan and configure the network withTwinCAT 3.

To export the ENI file from TwinCAT 3, execute the following steps.

1 Under the Device 1 (EtherCAT) node, in the EtherCAT tab, execute the
command to export the configuration file.

2 In the file save dialog box, enter an XML file name, such as
BeckhoffAIOconfig.xml.

Caution The ENI file is formatted as an XML file, with the XML file extension.
Building the real-time application produces an XML file with the same name as your
model. To avoid a conflict, use an ENI file name that is different from the name of
your model.

3 Save the Microsoft Visual Studio TwinCAT project file.

In the file save dialog box, enter an SLN file name, such as BeckhoffAIOconfig.

To review or modify your configuration, open the project SLN file using Microsoft Visual
Studio. If you modify the configuration, save both the XML and SLN files.

The next task is “Install EtherCAT Network for Execution” on page 9-11.

9 Model-Based EtherCAT Communications Support

9-10

Install EtherCAT Network for Execution
To install the EtherCAT Network for execution using the target computer as master node,
execute the following steps. For requirements, see “Hardware Setup Requirements for
TwinCAT 3” on page 9-7.

1 Record the PCI bus and PCI slot for the existing Ethernet cards in the target
computer. For more on identifying and selecting Ethernet cards for linking the
development and target computers, see “Ethernet Card Selection by Index”.

2 Install a dedicated, EtherCAT compatible Ethernet card on the target computer.
3 Record the PCI bus and PCI slot for the new Ethernet card. Check the PCI bus and

PCI slot for the existing card. To select the Ethernet card required for the Ethernet
link, update the Simulink Real-Time environment settings.

4 Connect your EtherCAT network to the target computer Ethernet port dedicated to
EtherCAT. Turn on the network.

The next task is “Configure EtherCAT Master Node Model” on page 9-12.

 Install EtherCAT Network for Execution

9-11

Configure EtherCAT Master Node Model

Before configuring the model, carry out the steps in “Configure EtherCAT Network with
TwinCAT 3” on page 9-8.

To configure model xpcEthercatBeckhoffAIO for execution using the target computer
as master node, execute the following steps.

9 Model-Based EtherCAT Communications Support

9-12

Configure EtherCAT Init Block
Before you use the EtherCAT Init block, configure the EtherCAT network withTwinCAT 3.

This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

As part of the configuration process, create and save an EtherCAT Network Information
(ENI) file. See “Configure EtherCAT Network with TwinCAT 3” on page 9-8.

If you configure EtherCAT distributed clocks in master shift mode, using the IEEE 1588
Sync Execution block in the same model produces a build error. To include EtherCAT
distributed clocks and IEEE 1588 synchronized execution in the same model, use
EtherCAT bus shift mode.

To configure the EtherCAT Init block of model xpcEthercatBeckhoffAIO, execute the
following steps.

1 Open model xpcEthercatBeckhoffAIO.
2 Double-click the EtherCAT Init block.
3 At the Config file (ENI) text box, browse to the EtherCAT Network Information

(ENI) file that you created when you configured the network (here,
'BeckhoffAIOconfig.xml'). You can enter the file name with or without single
quotes.

4 Take the default value 0 for parameter Device index.

If the model includes more than one EtherCAT network, enter a unique Device index
for each network. Enter the same value for all blocks in each network.

5 Enter the PCI bus and PCI slot for the EtherCAT port that you are connecting to
your EtherCAT network. See “Install EtherCAT Network for Execution” on page 9-11.

6 Take the default value Large model for parameter DC Tuning.

 Configure EtherCAT Master Node Model

9-13

7 To update the data in the EtherCAT Init block and propagate it to the other EtherCAT
blocks, click Refresh Data.

8 Click OK.

Configure EtherCAT PDO Receive Blocks
To configure the EtherCAT PDO Receive blocks of model xpcEthercatBeckhoffAIO,
execute the following steps. You must have selected a valid ENI file in the EtherCAT Init
block.

This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

1 Double-click the EtherCAT PDO Receive block labeled EtherCAT PDO Receive.
2 Set parameter Device Index to the value set in the EtherCAT Init block.
3 From the Signal Name list, select the EtherCAT network being accessed, here Term

2 (EL3062).AI Standard Channel 1.Value.
4 Note the value of parameter Sample Time, which is in seconds.

9 Model-Based EtherCAT Communications Support

9-14

5 Click OK.

Execute steps 5–9 for the EtherCAT PDO Receive block labeled EtherCAT PDO Receive
1.

Configure EtherCAT PDO Transmit Blocks
To configure the EtherCAT PDO Transmit blocks of model xpcEthercatBeckhoffAIO,
execute the following steps. You must have selected a valid ENI file in the EtherCAT Init
block.

This procedure assumes that you are familiar with TwinCAT 3 and its documentation.

1 Open model xpcEthercatBeckhoffAIO.
2 Double-click the EtherCAT PDO Transmit block labeled EtherCAT PDO Transmit.
3 Set parameter Device Index to the value set in the EtherCAT Init block.
4 Select a Signal Name value consistent with the EtherCAT network being accessed,

here Term 3 (EL4002).AO Outputs Channel 1.Analog output.

 Configure EtherCAT Master Node Model

9-15

5 Note the value of parameter Sample Time, which is in seconds.

6 Click OK.

Execute steps 2–6 for the EtherCAT PDO Transmit block labeled EtherCAT PDO
Transmit 1.

Configure EtherCAT Model Configuration Parameters
To configure the configuration parameters for model xpcEthercatBeckhoffAIO,
execute the following steps. You must have selected a valid ENI file in the EtherCAT Init
block. For more information, see “Fixed-Step Size Derivation” on page 9-24.

1 Open model xpcEthercatBeckhoffAIO.
2 Calculate the greatest common divisor (GCD) of the Sample Time values for the

EtherCAT tasks and for all source blocks in the model. In this case, the GCD is
0.010.

3 In the Model Editor, click Simulation > Model Configuration Parameters and
click the Solver tab.

9 Model-Based EtherCAT Communications Support

9-16

4 Set the Type parameter to Fixed-step and Fixed-step size (fundamental sample
time) to one of the following:

• An integral divisor of the GCD value, in seconds.
• auto, if all other source blocks in the model have defined sample times.

In this case, set it to 0.010.

The model configuration parameters dialog box looks like this figure.

5 Click OK.

The next tasks are building, downloading, and executing the EtherCAT master node
model.

 Configure EtherCAT Master Node Model

9-17

EtherCAT Distributed Clock Algorithm
In this section...
“Master Shift Mode” on page 9-18
“Bus Shift Mode” on page 9-20
“Limitations” on page 9-22

An EtherCAT network consists of a master node (the target computer) connected to an
arbitrary number of slave nodes (devices). Each node contains a clock that controls its
internal operation. When you enable distributed clocks, EtherCAT designates one clock in
the network as the reference clock. The EtherCAT distributed clock (DC) algorithm then
synchronizes the operation of multiple network nodes to the reference clock.

The DC algorithm operates in two phases. In phase 1, the algorithm aligns the clocks of
DC-enabled network nodes other than the master node with the clock of the first DC-
enabled slave node. In phase 2, the algorithm aligns the remaining unaligned clock with
the reference clock.

Do not manually adjust the sample time of the real-time application in either master shift
mode or bus shift mode.

Master Shift Mode
In master shift mode, the reference clock is the clock of the first DC-enabled slave in the
network.

In phase 1, the algorithm shifts the sample time of the network nodes to align with the
clock of the first slave node. In that process, the EtherCAT Init block output value
NetworkToSlaveClkDiff decreases to near zero.

9 Model-Based EtherCAT Communications Support

9-18

In phase 2, the algorithm shifts the sample time of the master stack running on the target
computer to align with the first slave node clock. In that process, the EtherCAT Init block
output value MasterToNetworkClkDiff decreases to near zero.

 EtherCAT Distributed Clock Algorithm

9-19

Bus Shift Mode
In bus shift mode, the reference clock is the clock of the master stack running on the
target computer.

In phase 1, the algorithm shifts the sample time of the DC-enabled network nodes to align
with the clock of the first DC-enabled slave node. In that process, the value
NetworkToSlaveClkDiff decreases to near zero.

9 Model-Based EtherCAT Communications Support

9-20

In phase 2, the algorithm shifts the sample time of the first DC-enabled slave node to
align with the clock of the master stack. In that process, the value
MasterToNetworkClkDiff decreases to near zero. The algorithm shifts the sample time
of the other network nodes to stay aligned with the first slave node clock. In that process,
the value of NetworkToSlaveClkDiff first increases, then decreases to near zero.

 EtherCAT Distributed Clock Algorithm

9-21

Limitations
If you configure EtherCAT distributed clocks in master shift mode, using the IEEE 1588
Sync Execution block in the same model produces a build error. To include EtherCAT
distributed clocks and IEEE 1588 synchronized execution in the same model, use
EtherCAT bus shift mode.

See Also
EtherCAT Init

9 Model-Based EtherCAT Communications Support

9-22

More About
• “EtherCAT Init Block DC Error Values” on page 9-28

 See Also

9-23

Fixed-Step Size Derivation
To configure the sample time for an EtherCAT model, set the fixed-step size for the entire
model in the model Configuration Parameters Solver pane. You can also specify the
sample times for key blocks.

During execution, the fixed-step size determines the cycle tick of the EtherCAT tasks and
the sample times of the other source blocks in the model. Subject to the fixed step size
value, the block type determines the sample time groups: a comparatively long sample
time for the synchronous SDO blocks and another, shorter sample time for the rest of the
blocks. As a best practice, set the sample time for the synchronous SDO blocks to a value
at least three times that for the PDO blocks.

Using an EtherCAT network configurator, specify the EtherCAT task cycle tick based on
the requirements of the EtherCAT network. Specify the fixed-step size so that the GCD of
the task cycle tick and the block sample times is an integer multiple of the fixed-step size.

For example, assume that the fastest EtherCAT task rate is 50 Hz, for a corresponding
cycle tick of 20 ms. The model block sample times, scaled to ms, are [20, 30, 40 50]. Then
the FSS is:

FSS = min(gcd(20, [20, 30, 40, 50]))

FSS =

 10

The software sends all PDO data updates at the fastest EtherCAT task cycle tick (20 ms),
even if you created multiple EtherCAT tasks running at different cycle ticks. The PDO
read and write blocks run at the cycle tick for the tasks containing the given EtherCAT
variable.

If you know that the other source blocks have defined sample times, you can set Fixed-
step size to auto. If one or more block sample times are incompatible with the fixed
sample time, there is an error during system update. If you do not encounter an error,
from the Simulink Display menu, set Sample Time > Colors to reveal the block sample
times.

9 Model-Based EtherCAT Communications Support

9-24

EtherCAT Protocol Mapping
EtherCAT supports several overlay protocols. Simulink Real-Time supports some of the
protocols directly, provides others with minimal support, and ignores some others.

Overlay Protocol Protocol
Description

Support Type Means of Support

CANopen over
EtherCAT (CoE)

Implements CAN
functionality using
EtherCAT

Direct Model CoE using
SDO upload and
download blocks.

Ethernet over
EtherCAT (EoE)

Provides EtherCAT
wrapper around
Ethernet packets.
EtherCAT acts as
network switch

Minimal Send wrapped EoE
messages between
separate slave
devices.

File Access over
EtherCAT (FoE)

Updates the
EtherCAT board
ROM

Ignored Update the EtherCAT
slave ROM with
TwinCAT 3.

Functional Safety
over EtherCAT
(FSoE)

Sends asynchronous
‘safety’ messages
over the network.

Ignored

Servo over EtherCAT
(SoE)

Wraps vendor-
specific servo
commands in a
common protocol.

Ignored

 EtherCAT Protocol Mapping

9-25

EtherCAT Configurator Component Mapping
The following table summarizes the mapping between third-party EtherCAT configurator
components and Simulink Real-Time blocks and block attributes. For more information,
see the TwinCAT 3 or Acontis EC-Engineer documentation.

EtherCAT Configurator Component Simulink Real-Time
ComponentTwinCAT Acontis EC-Engineer

Cycle ticks (task step) Cycle time Sample time
Scalars and vectors Dimension Dimension
BitSize Byte size of type Type Size
Data Type, BitSize Data type Signal Type
EtherCAT device variable
linked to a variable in a task

All PDO variables included
in default task, with no
linking required.

EtherCAT PDO
Receive Signal Name

Device variables in Process
Image entity

EtherCAT PDO Receive or
EtherCAT PDO Transmit
block

EtherCAT PDO Receive or
EtherCAT PDO Transmit
block

See Also
EtherCAT PDO Receive | EtherCAT PDO Transmit

More About
• “EtherCAT Data Types” on page 9-27

9 Model-Based EtherCAT Communications Support

9-26

EtherCAT Data Types
The Simulink Real-Time EtherCAT blocks directly support the following EtherCAT data
types. The software maps other EtherCAT data types to a byte array. The byte array
requires explicit conversion using Byte Pack, Byte Unpack, or S-function blocks.

EtherCAT Data Type Data Type Size (bits) Converted Simulink Data
Type

bit 1 uint8
bit8 8 uint8
bitarr 8 (bit array) uint8
bitarr16 16 (bit array) uint16
bitarr32 32 (bit array) uint32
BOOL 1 Boolean
int8 8 int8
int16 16 int16
int32 32 int32
int64 64 int64
uint8 8 uint8
uint16 16 uint16
uint32 32 uint32
uint64 64 uint64
float 32 real32_T
double 64 real_T

 EtherCAT Data Types

9-27

EtherCAT Init Block DC Error Values
The Simulink Real-Time EtherCAT Init block returns the following EtherCAT distributed
clock (DC) error values. The value 0 indicates that no error occurred.

Error Value Description
1 (0x1) Initialization function not called or not successful
2 (0x2) Controller error — synchronization out of limit
3 (0x3) Not enough memory
4 (0x4) Hardware layer — (BSP) invalid
5 (0x5) Hardware layer — error modifying the timer
6 (0x6) Hardware layer — timer is not running
7 (0x7) Hardware layer — function is called on wrong CPU
8 (0x8) Invalid DC synchronization period length
9 (0x9) Error DCM Controller SetVal is too small
10 (0xA) Error DCM Controller — Drift between local timer and ref clock

too high

9 Model-Based EtherCAT Communications Support

9-28

EtherCAT Error Codes
The Error output for the EtherCAT blocks returns an EtherCAT error code. These blocks
include:

• EtherCAT Sync SSC/SoE Upload
• EtherCAT Sync SSC/SoE Download
• EtherCAT Async SSC/SoE Upload
• EtherCAT Async SSC/SoE Download
• EtherCAT Sync SDO Upload
• EtherCAT Sync SDO Download
• EtherCAT Async SDO Upload
• EtherCAT Async SDO Download
• EtherCAT Set State

These six EtherCAT error codes are pre-pended onto the 'small number' error codes.
These pre-pended codes should never appear without the small number added. These pre-
pended codes appear in the upper 16 bits of the unsigned 32-bit error code and can be
masked to display the small number error code. The Decimal column in the table shows
the base 10 value after the upper 16 bits are masked.

Pre-Pended Codes Hexadecimal Error text
EC_E_NOERROR 0x00000000 No Error
EC_E_ERROR 0x98110000 Unspecific Error
EMRAS_E_ERROR 0x98110180 Unspecific RAS Error

The RAS (Remote Access Server) is not yet
implemented

DCM_E_ERROR 0x981201C0 Unspecific DCM Error

This class of error comes from the master shift
DC driver

EC_TEXTBASE 0x0200 Unknown Text (Base)
EC_ALSTATEBASE 0x0300 AL Status No Error

These are the 'small-number' EtherCAT error codes.

 EtherCAT Error Codes

9-29

Hexadecimal Decimal Error text
EC_E_ERROR+0x01 1 ERROR: Feature not supported
EC_E_ERROR+0x02 2 ERROR: Invalid index
EC_E_ERROR+0x03 3 ERROR: Invalid offset
EC_E_ERROR+0x04 4 ERROR: Cancel
EC_E_ERROR+0x05 5 ERROR: Invalid size
EC_E_ERROR+0x06 6 ERROR: Invalid data
EC_E_ERROR+0x07 7 ERROR: Not ready
EC_E_ERROR+0x08 8 ERROR: Busy
EC_E_ERROR+0x09 9 ERROR: Cannot queue acyclic EtherCAT command

(MasterConfig.dwMaxQueuedEthFrames)
EC_E_ERROR+0x0A 10 ERROR: No memory left
EC_E_ERROR+0x0B 11 ERROR: Invalid parameter
EC_E_ERROR+0x0C 12 ERROR: Not found
EC_E_ERROR+0x0D 13 ERROR: Duplicate
EC_E_ERROR+0x0E 14 ERROR: Invalid state
EC_E_ERROR+0x0F 15 ERROR: Cannot add slave to timer list
EC_E_ERROR+0x10 16 ERROR: Time-out
EC_E_ERROR+0x11 17 ERROR: Open failed
EC_E_ERROR+0x12 18 ERROR: Send failed
EC_E_ERROR+0x13 19 ERROR: Insert mailbox error
EC_E_ERROR+0x14 20 ERROR: Invalid mailbox command
EC_E_ERROR+0x15 21 ERROR: Unknown mailbox protocol command
EC_E_ERROR+0x16 22 ERROR: Access denied
EC_E_ERROR+0x17 23 ERROR: Identification failed
EC_E_ERROR+0x1A 26 ERROR: Invalid product key
EC_E_ERROR+0x1B 27 ERROR: Wrong format of master XML file
EC_E_ERROR+0x1C 28 ERROR: Feature disabled
EC_E_ERROR+0x1D 29 ERROR: Shadow memory requested in wrong mode

9 Model-Based EtherCAT Communications Support

9-30

Hexadecimal Decimal Error text
EC_E_ERROR+0x1E 30 Bus configuration mismatch
EC_E_ERROR+0x1F 31 ERROR: Error in reading config file
EC_E_ERROR+0x20 32 ERROR: Configuration doesn't support SAFEOP and

OP requested state
EC_E_ERROR+0x21 33 ERROR: Cyclic commands are missing
EC_E_ERROR+0x22 34 ERROR: AL_STATUS register read missing in XML

file for at least one state
EC_E_ERROR+0x23 35 ERROR: Fatal internal McSm
EC_E_ERROR+0x24 36 ERROR: Slave error
EC_E_ERROR+0x25 37 ERROR: Frame lost, IDX mismatch
EC_E_ERROR+0x26 38 ERROR: At least one EtherCAT command is missing

in the received frame
EC_E_ERROR+0x28 40 ERROR: IOCTL

EC_IOCTL_DC_LATCH_REQ_LTIMVALS not possible
in DC Latching auto read mode

EC_E_ERROR+0x29 41 ERROR: Auto increment address - increment
mismatch (slave missing)

EC_E_ERROR+0x2A 42 ERROR: Slave in invalid state, e.g. not in OP (API not
callable in this state

EC_E_ERROR+0x2B 43 ERROR: Station address lost or slave missing - FPRD
to AL_STATUS failed

EC_E_ERROR+0x2C 44 ERROR: Too many cyclic commands in XML
configuration file. (Check
EC_T_MASTER_CONFIG.dwMaxQueuedEthFrames

EC_E_ERROR+0x2D 45 ERROR: Ethernet link cable disconnected
EC_E_ERROR+0x2E 46 ERROR: Master core not accessible
EC_E_ERROR+0x2F 47 ERROR CoE: Mailbox send: working counter
EC_E_ERROR+0x31 49 ERROR: No mailbox support
EC_E_ERROR+0x32 50 ERROR CoE: Protocol not supported
EC_E_ERROR+0x33 51 ERROR EoE: Protocol not supported

 EtherCAT Error Codes

9-31

Hexadecimal Decimal Error text
EC_E_ERROR+0x34 52 ERROR FoE: Protocol not supported
EC_E_ERROR+0x35 53 ERROR SoE: Protocol not supported
EC_E_ERROR+0x36 54 ERROR VoE: Protocol not supported

CoE SDO command errors, can be returned by the 4 SDO/CoE blocks

EC_E_ERROR+0x40 64 ERROR SDO: Toggle bit not alternated.
EC_E_ERROR+0x41 65 ERROR SDO: SDO protocol time-out.
EC_E_ERROR+0x42 66 ERROR SDO: Client/server command specifier not

valid or unknown.
EC_E_ERROR+0x43 67 ERROR SDO: Invalid block size (block mode only.
EC_E_ERROR+0x44 68 ERROR SDO: Invalid sequence number (block mode

only.
EC_E_ERROR+0x45 69 ERROR SDO: CRC error (block mode only.
EC_E_ERROR+0x46 70 ERROR SDO: Out of memory.
EC_E_ERROR+0x47 71 ERROR SDO: Unsupported access to an object.
EC_E_ERROR+0x48 72 ERROR SDO: Attempt to read a write only object.
EC_E_ERROR+0x49 73 ERROR SDO: Attempt to write a read only object.
EC_E_ERROR+0x4A 74 ERROR SDO: Object does not exist in the object

dictionary.
EC_E_ERROR+0x4B 75 ERROR SDO: Object cannot be mapped to the PDO.
EC_E_ERROR+0x4C 76 ERROR SDO: Number and length of objects to be

mapped exceed PDO length
EC_E_ERROR+0x4D 77 ERROR SDO: General parameter incompatibility
EC_E_ERROR+0x4E 78 ERROR SDO: General internal incompatibility in the

device.
EC_E_ERROR+0x4F 79 ERROR SDO: Access failed due to an hardware error.
EC_E_ERROR+0x50 80 ERROR SDO: Data type does not match, length of

service parameter does not match

9 Model-Based EtherCAT Communications Support

9-32

Hexadecimal Decimal Error text
EC_E_ERROR+0x51 81 ERROR SDO: Data type does not match, service

parameter too long
EC_E_ERROR+0x52 82 ERROR SDO: Data type does not match, service

parameter too short
EC_E_ERROR+0x53 83 ERROR SDO: Sub-index does not exist.
EC_E_ERROR+0x54 84 ERROR SDO: Write access - Parameter value out of

range
EC_E_ERROR+0x55 85 ERROR SDO: Write access - Parameter value out of

high limit
EC_E_ERROR+0x56 86 ERROR SDO: Write access - Parameter value out of

low limit
EC_E_ERROR+0x57 87 ERROR SDO: Maximum value is less than minimum

value.
EC_E_ERROR+0x58 88 ERROR SDO: General error
EC_E_ERROR+0x59 89 ERROR SDO: Unable to transfer or store data to the

application
EC_E_ERROR+0x5A 90 ERROR SDO: Unable to transfer or store data to the

application because of local control
EC_E_ERROR+0x5B 91 ERROR SDO: Unable to transfer or store data to the

application because of the present device state
EC_E_ERROR+0x5C 92 ERROR SDO: Dynamic generation of object dictionary

failed or missing object dictionary
EC_E_ERROR+0x5D 93 ERROR SDO: Unknown code.

FoE commands (not reachable with SLRT implementation)

EC_E_ERROR+0x60 96 ERROR FoE: Vendor specific FoE error
EC_E_ERROR+0x61 97 ERROR FoE: Not found
EC_E_ERROR+0x62 98 ERROR FoE: Access denied
EC_E_ERROR+0x63 99 ERROR FoE: Disk full

 EtherCAT Error Codes

9-33

Hexadecimal Decimal Error text
EC_E_ERROR+0x64 100 ERROR FoE: Illegal
EC_E_ERROR+0x65 101 ERROR FoE: Wrong packet number
EC_E_ERROR+0x66 102 ERROR FoE: Already exists
EC_E_ERROR+0x67 103 ERROR FoE: User missing
EC_E_ERROR+0x68 104 ERROR FoE: Bootstrap only
EC_E_ERROR+0x69 105 ERROR FoE: Not bootstrap
EC_E_ERROR+0x6A 106 ERROR FoE: No rights
EC_E_ERROR+0x6B 107 ERROR FoE: Program error

End of FoE specific errors

General errors again

EC_E_ERROR+0x70 112 ERROR: Master configuration not found
EC_E_ERROR+0x71 113 ERROR: Command error while EEPROM upload
EC_E_ERROR+0x72 114 ERROR: Command error while EEPROM download
EC_E_ERROR+0x73 115 ERROR: Cyclic command wrong size (too long)
EC_E_ERROR+0x74 116 ERROR: Invalid input offset in cyc cmd, please check

InputOffs
EC_E_ERROR+0x75 117 ERROR: Invalid output offset in cyc cmd, please

check OutputOffs
EC_E_ERROR+0x76 118 ERROR: Port Close failed
EC_E_ERROR+0x77 119 ERROR: Port Open failed

9 Model-Based EtherCAT Communications Support

9-34

Hexadecimal Decimal Error text

SoE command errors, can be returned by the 4 SSC/SoE blocks

EC_E_ERROR+0x78 120 ERROR SoE: Invalid access to element 0
EC_E_ERROR+0x79 121 ERROR SoE: Does not exist
EC_E_ERROR+0x7a 122 ERROR SoE: Invalid access to element 1
EC_E_ERROR+0x7b 123 ERROR SoE: Name does not exist
EC_E_ERROR+0x7c 124 ERROR SoE: Name undersize in transmission
EC_E_ERROR+0x7d 125 ERROR SoE: Name oversize in transmission
EC_E_ERROR+0x7e 126 ERROR SoE: Name unchangeable
EC_E_ERROR+0x7f 127 ERROR SoE: Name currently write-protected
EC_E_ERROR+0x80 128 ERROR SoE: Attribute undersize in transmission
EC_E_ERROR+0x81 129 ERROR SoE: Attribute oversize in transmission
EC_E_ERROR+0x82 130 ERROR SoE: Attribute unchangeable
EC_E_ERROR+0x83 131 ERROR SoE: Attribute currently write-protected
EC_E_ERROR+0x84 132 ERROR SoE: Unit does not exist
EC_E_ERROR+0x85 133 ERROR SoE: Unit undersize in transmission
EC_E_ERROR+0x86 134 ERROR SoE: Unit oversize in transmission
EC_E_ERROR+0x87 135 ERROR SoE: Unit unchangeable
EC_E_ERROR+0x88 136 ERROR SoE: Unit currently write-protected
EC_E_ERROR+0x89 137 ERROR SoE: Minimum input value does not exist
EC_E_ERROR+0x8a 138 ERROR SoE: Minimum input value undersize in

transmission
EC_E_ERROR+0x8b 139 ERROR SoE: Minimum input value oversize in

transmission
EC_E_ERROR+0x8c 140 ERROR SoE: Minimum input value unchangeable
EC_E_ERROR+0x8d 141 ERROR SoE: Minimum input value currently write-

protected

 EtherCAT Error Codes

9-35

Hexadecimal Decimal Error text
EC_E_ERROR+0x8e 142 ERROR SoE: Maximum input value does not exist
EC_E_ERROR+0x8f 143 ERROR SoE: Maximum input value undersize in

transmission
EC_E_ERROR+0x90 144 ERROR SoE: Maximum input value oversize in

transmission
EC_E_ERROR+0x91 145 ERROR SoE: Maximum input value unchangeable
EC_E_ERROR+0x92 146 ERROR SoE: Maximum input value currently write-

protected
EC_E_ERROR+0x93 147 ERROR SoE: Data item does not exist
EC_E_ERROR+0x94 148 ERROR SoE: Data item undersize in transmission
EC_E_ERROR+0x95 149 ERROR SoE: Data item oversize in transmission
EC_E_ERROR+0x96 150 ERROR SoE: Data item unchangeable
EC_E_ERROR+0x97 151 ERROR SoE: Data item currently write-protected
EC_E_ERROR+0x98 152 ERROR SoE: Data item less than minimum input

value limit
EC_E_ERROR+0x99 153 ERROR SoE: Data item exceeds maximum input value

limit
EC_E_ERROR+0x9a 154 ERROR SoE: Data item is incorrect
EC_E_ERROR+0x9b 155 ERROR SoE: Data item is protected by password
EC_E_ERROR+0x9c 156 ERROR SoE: Data item temporary unchangeable (in

AT or MDT)
EC_E_ERROR+0x9d 157 ERROR SoE: Invalid indirect
EC_E_ERROR+0x9e 158 ERROR SoE: Data item temporary unchangeable

(parameter or opmode...)
EC_E_ERROR+0x9f 159 ERROR SoE: Command already active
EC_E_ERROR+0x100 256 ERROR SoE: Command not interruptable
EC_E_ERROR+0x101 257 ERROR SoE: Command not available (in this phase)
EC_E_ERROR+0x102 258 ERROR SoE: Command not available (invalid

parameter...)

9 Model-Based EtherCAT Communications Support

9-36

Hexadecimal Decimal Error text
EC_E_ERROR+0x103 259 ERROR SoE: Response drive number not identical

with the requested drive number
EC_E_ERROR+0x104 260 ERROR SoE: Response IDN not identical with the

requested IDN
EC_E_ERROR+0x105 261 ERROR SoE: At least one fragment lost
EC_E_ERROR+0x106 262 ERROR SoE: RX buffer is full (ecat call with to small

data-buffer)
EC_E_ERROR+0x107 263 ERROR SoE: No data state.
EC_E_ERROR+0x108 264 ERROR SoE: No default value.
EC_E_ERROR+0x109 265 ERROR SoE: Default value transmission too long.
EC_E_ERROR+0x10a 266 ERROR SoE: Default value cannot be changed, read

only.
EC_E_ERROR+0x10b 267 ERROR SoE: Invalid drive number.
EC_E_ERROR+0x10c 268 ERROR SoE: General error
EC_E_ERROR+0x10d 269 ERROR SoE: No element addressed.

End of SoE specific error codes

EC_E_ERROR+0x10e 270 Command not executed. Slave is not present on Bus
EC_E_ERROR+0x10f 271 ERROR FoE: Protocol not supported in boot strap
EC_E_ERROR+0x110 272 ERROR: command error while EEPROM reload
EC_E_ERROR+0x111 273 ERROR: command error while Reset Slave Controller
EC_E_ERROR+0x11E 286 Bus configuration not detected, Topology changed
EC_E_ERROR+0x11F 287 ERROR EoE: Mailbox receive: working counter
EC_E_ERROR+0x120 288 ERROR FoE: Mailbox receive: working counter
EC_E_ERROR+0x121 289 ERROR SoE: mailbox receive: working counter
EC_E_ERROR+0x122 290 ERROR AoE: Mailbox receive: working counter
EC_E_ERROR+0x123 291 ERROR VoE: Mailbox receive: working counter

 EtherCAT Error Codes

9-37

Hexadecimal Decimal Error text
EC_E_ERROR+0x124 292 ERROR: EEPROM assignment failed
EC_E_ERROR+0x125 293 ERROR: Error mailbox received
EC_E_ERROR+0x126 294 ERROR: Redundancy line break
EC_E_ERROR+0x127 295 ERROR: Invalid EtherCAT cmd in cyclic frame with

redundancy
EC_E_ERROR+0x128 296 ERROR: <PreviousPort>-tag is missing!
EC_E_ERROR+0x129 297 ERROR: DC is enabled and DC cyclic commands are

missing (e.g. access to 0x900)!
EC_E_ERROR+0x130 304 ERROR: DL Status Interrupt because of changed

Topology
EC_E_ERROR+0x131 305 ERROR: The Pass Through Server is not running!
EC_E_ERROR+0x132 306 ERROR: The ADS adapter (Pass Through Server) is

running!
EC_E_ERROR+0x133 307 ERROR: Could not start the Pass Through Server!
EC_E_ERROR+0x134 308 ERROR: The Pass Through Server could not bind the

IP address with a socket!
EC_E_ERROR+0x135 309 The Pass Through Server is running but not enabled
EC_E_ERROR+0x136 310 ERROR: This LinkLayer mode is not supported by the

Pass Through Server!
EC_E_ERROR+0x137 311 ERROR VoE: No VoE mailbox received!
EC_E_ERROR+0x138 312 ERROR: SYNC out unit of reference clock is disabled!
EC_E_ERROR+0x139 313 ERROR: Reference clock not found!
EC_E_ERROR+0x13B 315 ERROR: Mailbox command working counter error!

AoE is not supported by any SLRT blocks. These should never be returned.

EC_E_ERROR+0x13C 316 ERROR AoE: Protocol not supported
EC_E_ERROR+0x13D 317 ERROR AoE: Invalid AoE response received!
EC_E_ERROR+0x13E 318 ERROR AoE: Common AoE device error

9 Model-Based EtherCAT Communications Support

9-38

Hexadecimal Decimal Error text
EC_E_ERROR+0x13F 319 ERROR AoE: Service is not supported by server
EC_E_ERROR+0x140 320 ERROR AoE: Invalid index group
EC_E_ERROR+0x141 321 ERROR AoE: Invalid index offset
EC_E_ERROR+0x142 322 ERROR AoE: Reading/writing not permitted
EC_E_ERROR+0x143 323 ERROR AoE: Parameter size not correct
EC_E_ERROR+0x144 324 ERROR AoE: Invalid parameter value(s)
EC_E_ERROR+0x145 325 ERROR AoE: Device is not in a ready state
EC_E_ERROR+0x146 326 ERROR AoE: Device is busy
EC_E_ERROR+0x147 327 ERROR AoE: Invalid context
EC_E_ERROR+0x148 328 ERROR AoE: Out of memory
EC_E_ERROR+0x149 329 ERROR AoE: Invalid parameter value(s)
EC_E_ERROR+0x14A 330 ERROR AoE: Not found
EC_E_ERROR+0x14B 331 ERROR AoE: Syntax error in command or file
EC_E_ERROR+0x14C 332 ERROR AoE: Objects do not match
EC_E_ERROR+0x14D 333 ERROR AoE: Object already exists
EC_E_ERROR+0x14E 334 ERROR AoE: Symbol not found
EC_E_ERROR+0x14F 335 ERROR AoE: Symbol version invalid
EC_E_ERROR+0x150 336 ERROR AoE: Server is in invalid state
EC_E_ERROR+0x151 337 ERROR AoE: AdsTransMode not supported
EC_E_ERROR+0x152 338 ERROR AoE: Notification handle is invalid
EC_E_ERROR+0x153 339 ERROR AoE: Notification client not registered
EC_E_ERROR+0x154 340 ERROR AoE: No more notification handles
EC_E_ERROR+0x155 341 ERROR AoE: Size for watch to big
EC_E_ERROR+0x156 342 ERROR AoE: Device not initialized
EC_E_ERROR+0x157 343 ERROR AoE: Device has a timeout
EC_E_ERROR+0x158 344 ERROR AoE: Query interface failed
EC_E_ERROR+0x159 345 ERROR AoE: Wrong interface required
EC_E_ERROR+0x15A 346 ERROR AoE: Class ID is invalid

 EtherCAT Error Codes

9-39

Hexadecimal Decimal Error text
EC_E_ERROR+0x15B 347 ERROR AoE: Object ID is invalid
EC_E_ERROR+0x15C 348 ERROR AoE: Request is pending
EC_E_ERROR+0x15D 349 ERROR AoE: Request is aborted
EC_E_ERROR+0x15E 350 ERROR AoE: Signal warning
EC_E_ERROR+0x15F 351 ERROR AoE: Invalid array index
EC_E_ERROR+0x160 352 ERROR AoE: Symbol not active -> release handle and

try again
EC_E_ERROR+0x161 353 ERROR AoE: Access denied
EC_E_ERROR+0x162 354 ERROR AoE: Internal error
EC_E_ERROR+0x163 355 ERROR AoE: Target port not found
EC_E_ERROR+0x164 356 ERROR AoE: Target machine not found
EC_E_ERROR+0x165 357 ERROR AoE: Unknown command ID
EC_E_ERROR+0x166 358 ERROR AoE: Port not connected
EC_E_ERROR+0x167 359 ERROR AoE: Invalid AMS length
EC_E_ERROR+0x168 360 ERROR AoE: invalid AMS Net ID
EC_E_ERROR+0x169 361 ERROR AoE: Port disabled
EC_E_ERROR+0x16A 362 ERROR AoE: Port already connected
EC_E_ERROR+0x16B 363 ERROR AoE: Invalid AMS port!
EC_E_ERROR+0x16C 364 ERROR AoE: No memory!
EC_E_ERROR+0x16D 365 ERROR AoE: Vendor specific AoE device error
EC_E_ERROR+0x16E 366 ERROR: Invalid AoE NetID!

End of AoE specific errors

Generic errors that indicate configuration problems, should never happen.

9 Model-Based EtherCAT Communications Support

9-40

Hexadecimal Decimal Error text
EC_E_ERROR+0x16F 367 ERROR: Maximum number of bus slave has been

exceeded!
EC_E_ERROR+0x170 368 ERROR Mailbox: Syntax of 6 octet Mailbox header is

wrong!
EC_E_ERROR+0x171 369 ERROR Mailbox: The Mailbox protocol is not

supported!
EC_E_ERROR+0x172 370 ERROR Mailbox: Field contains wrong value!
EC_E_ERROR+0x173 371 ERROR Mailbox: The service in the Mailbox protocol

is not supported!
EC_E_ERROR+0x174 372 ERROR Mailbox: The mailbox protocol header of the

mailbox protocol is wrong!
EC_E_ERROR+0x175 373 ERROR Mailbox: Length of received mailbox data is

too short!
EC_E_ERROR+0x176 374 ERROR Mailbox: Mailbox protocol can not be

processed because of limited resources!
EC_E_ERROR+0x177 375 ERROR Mailbox: The length of data is inconsistent!
EC_E_ERROR+0x178 376 ERROR: Slaves with DC configured are present on

bus before the reference clock!
EC_E_ERROR+0x179 377 ERROR: Data type conversion failed!
EC_E_ERROR+0x17A 378 ERROR FoE: File is bigger than max file size.
EC_E_ERROR+0x17B 379 ERROR: Line crossed.
EC_E_ERROR+0x17C 380 ERROR: Line crossed at slave \%s\", EtherCAT auto-

increment address=%d, station address=%d. Error at
port %d."

EC_E_ERROR+0x17D 381 ERROR: Socket disconnected

See Also
EtherCAT Async SSC/SoE Download | EtherCAT Async SSC/SoE Upload | EtherCAT Async
SDO Download | EtherCAT Async SDO Upload | EtherCAT Set State | EtherCAT Sync
SSC/SoE Download | EtherCAT Sync SSC/SoE Upload | EtherCAT Sync SDO Download |
EtherCAT Sync SDO Upload

 See Also

9-41

EtherCAT Blocks

10

EtherCAT Init
Initialize EtherCAT Master node with data in the EtherCAT Network Information (ENI)
file
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Init block initializes the EtherCAT master stack. The block specifies the
Ethernet interface cards in the network.

Before you use this block, create and save an EtherCAT Network Information (ENI) file.
You export the ENI file from the Beckhoff TwinCAT or the Acontis EC-Engineer. See
“Configure EtherCAT Network with TwinCAT 3” on page 9-8.

The Beckhoff ET9000 configurator is no longer supported.

To find the ENI file, click Browse. To read the ENI file and store the data in the EtherCAT
Init block, click Refresh Data.

The Simulink Real-Time software supports multiple EtherCAT networks. To use multiple
networks:

• Use a different Ethernet card interface for each EtherCAT network.
• In the model, use one EtherCAT Init block for each network.

If you configure EtherCAT distributed clocks in master shift mode, using the IEEE 1588
Sync Execution block in the same model produces a build error. To include EtherCAT
distributed clocks and IEEE 1588 synchronized execution in the same model, use
EtherCAT bus shift mode.

10 EtherCAT Blocks

10-2

Ports

Output
Status — Status information about the EtherCAT network
vector

The Status vector contains six values: ErrVal, MasterState, DCErrVal,
MasterToNetworkClkDiff, DCInitState, and NetworkToSlaveClkDiff.

• ErrVal — Error status:

• No error: 0
• Error: Value less than 0.

Because ErrVal shows the latest error status, the propagation of errors can hide the
original error. To find the original error, add an EtherCAT Get Notifications block and
use SimulinkRealTime.etherCAT.filterNotifications to print the status
codes that the EtherCAT stack transmits.

• MasterState — Operating state of the EtherCAT network:

State Value Description
INIT 1 Initialization – The system finds slave devices and

initializes the communication controller.
PREOP 2 Preoperational — The system uses the communication

controller to exchange system-specific initialization
data. In this state, the network cannot transmit or
receive signal data.

SAFEOP 4 Safe operational — The network is running and ready
for full operation. The master sends input data to the
slave device. The slave device output remains in a safe
state.

OP 8 Operational — The network is in full operation. The
master sends input data to the slave device. The slave
device responds with output data.

• DCErrVal — DC error status:

 EtherCAT Init

10-3

• No DC Error: 0
• DC error: Value from on page 9-28.

The value 0 appears both if the distributed clock is turned off and if no error occurs.
• MasterToNetworkClkDiff — Time difference, in nanoseconds, between the master

stack clock and the clock on the first slave device that has enabled DC.
• DCInitState — Operating state of the distributed clock:

• DC not enabled or not initialized: 0
• DC has been started: 1

• NetworkToSlaveClkDiff — Time difference, in nanoseconds, between the clock on
the first EtherCAT slave device and the least closely locked clock on the remaining
slave devices.

This value applies only to slave devices that have enabled DC. If only one device on the
network has enabled DC, this value is 0.

Data Types: int32

Parameters
Config file (ENI) — ENI file from the EtherCAT configurator
character vector

Specify the ENI file that you exported from the EtherCAT configurator.

You can specify the full path name or a partial path name. If you specify only the file
name, the software searches for the file in the current folder and on the MATLAB path. If
more than one file with that name exists on the path, MATLAB displays a message box
where you select the file that you want.

Clicking Browse inserts a full, editable path name.

Programmatic Use
Block Parameter: config_file

Device index — EtherCAT Ethernet card identifier
0-15

10 EtherCAT Blocks

10-4

A unique integer in the range 0–15 that identifies the Ethernet card for an EtherCAT
network.

For each EtherCAT network, the software generates a unique device index. The software
inserts that device index as Device index into the EtherCAT Init block that represents
the network.

Programmatic Use
Block Parameter: device_id

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: pci_bus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: pci_slot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: pci_function

DC Tuning — Distributed clock initialization parameter
Large model (default) | Medium model | Small model

Enter the distributed clock initialization parameter, one of these values:

• Large model (default) — Sends 16,000 timing initialization packets and allows 1
second of settling time. Provides best initial synchronization between multiple slaves
that have DC enabled.

 EtherCAT Init

10-5

• Medium model — Sends 8,000 timing initialization packets and allows 0.3 seconds
of settling time. The model reaches operational state about a second earlier than it
does with the Large model setting.

• Small model — Sends 2,000 timing initialization packets and allows 0.2 seconds of
settling time. The model reaches operational state earlier than it does with the other
settings.

Monitor device synchronization at the moment that the model enters the operational
state. Check that the devices are synchronized closely enough for your application.

Programmatic Use
Block Parameter: dctuning

Enable Log and Debugging — Access to debugging and logging block
parameters
off (default) | on

Selecting Enable Log and Debugging makes these parameters visible: Log link layer
error messages, Log master state changes, Log all state changes, Log base clock
changes, Log master config changes, and Target log filename.

Programmatic Use
Block Parameter: enaDebug

Log link layer error messages, Log master state changes, Log all state
changes, Log base clock changes, Log master config changes — Generate
driver-level debug messages
off (default) | on

To generate driver-level messages for driver and network debugging, select these check
boxes.

For a high-speed model, turning on these options can cause CPU overloads.

To make these parameters visible, select Enable Log and Debugging.

Programmatic Use
Block Parameter: masterDbg

Target log filename — Name of log file on target computer
character vector

10 EtherCAT Blocks

10-6

Enter the name of the log file on the target computer, in single quotes. The default value
is 'c:\dbglog.txt'.

If the target computer does not have a usable disk partition, the software does not create
the log file.

To make these parameters visible, select Enable Log and Debugging.

Programmatic Use
Block Parameter: logFile

See Also
on page 9-28 | EtherCAT Get Notifications |
SimulinkRealTime.etherCAT.filterNotifications

Topics

on page 9-8
on page 9-12

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

 EtherCAT Init

10-7

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Get Notifications
Collect notifications from the EtherCAT bus
Library: Simulink Real-Time / EtherCAT

Description
Collects notifications from the EtherCAT stack and presents them to the output as a 21-
element vector of int32. At each time step, the block outputs what it has accumulated
and clears itself for the next time step.

The vector contains the number of notifications in element 1, followed by up to 20
notification codes. The maximum number of notifications is 20. If the bus presents more
than 20 notifications to the output, the block discards the newest notifications and
presents the first 20 that were received.

Ports

Output
Values — Self-descriptive 21-element vector containing EtherCAT notification
codes
[Length 20 * Notification]

• Length (0 – 20) — the number of notifications in the vector.
• Notification — a composite of a notification type and a specific value. The types

are:
• • EC_NOTIFY_GENERIC [0x00000000 (0)] — Represents state changes, such as:

0x00000001 (1) — EtherCAT operational state change.
• EC_NOTIFY_ERROR [0x00010000 (65536)] — Represents error states, such as

0x00010001 (65537):cyclic command: working counter error. Some
describe changes in error state.

10 EtherCAT Blocks

10-8

• EC_NOTIFY_SCANBUS [0x00030000 (3*65536)] — Represents ScanBus error
states, such as 0x00030002 (196610):ScanBus mismatch.

• EC_NOTIFY_HOTCONNECT [0x00040000 (4*65536)] — Represents hot connect
states, such as 0x00040005 (262149):Slave disappears.

To print the valid notification values and descriptions, call
SimulinkRealTime.etherCAT.filterNotifications without an argument.
Data Types: int32

Parameters
Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.
Programmatic Use
Block Parameter: device_id

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. Use the EtherCAT task
sample time.
Programmatic Use
Block Parameter: sample_time

Tips
To collect notifications:

1 Add the EtherCAT Get Notifications block to your model.
2 Connect the EtherCAT Get Notifications block to an Outport block. If possible, make

this Outport block Outport block 1. If the EtherCAT Get Notifications block is
connected to the first Outport block, the 21 notification signals appear in the first 21
columns tg.OutputLog matrix. Otherwise, you must specify the columns with an
offset.

 EtherCAT Get Notifications

10-9

3 Increase the value of Signal logging data buffer size in doubles by at least a
factor of 100 in the Simulink Real-Time Options pane. The EtherCAT Get
Notifications block can quickly increase the size of the output log.

4 To print the notifications for this model, pass the relevant 21 columns into the
SimulinkRealTime.etherCAT.filterNotifications function.

See Also
EtherCAT Init | SimulinkRealTime.etherCAT.filterNotifications

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2017a

10 EtherCAT Blocks

10-10

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT PDO Receive
Receive data from slave device represented by process data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT PDO Receive block receives data from the EtherCAT slave device.

The block parameter dialog box has two sections, parameters and signal information.
When you specify an EtherCAT network and device variable name:

• The EtherCAT PDO Receive block mask is updated with the selected signal name.
• The signal information in the block parameter dialog box is updated to reflect the

device variable.

Note If an error occurs while the software parses the configuration file specified in the
EtherCAT Init block, this block shows an error message.

Ports

Output
D — Data received from slave device
[double]

Vector of data received from the EtherCAT slave device.

Parameters
Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

 EtherCAT PDO Receive

10-11

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.
Programmatic Use
Block Parameter: device_id

Signal name — EtherCAT device variable name
character vector

From the list, select the EtherCAT device variable name.

The block parameter dialog box updates the read-only signal information to reflect the
device variable that you selected.

For a mapping of EtherCAT configurator components to Simulink Real-Time blocks and
block attributes, see “EtherCAT Configurator Component Mapping” on page 9-26.

For a mapping of Simulink data types to EtherCAT data types, see “EtherCAT Data Types”
on page 9-27.

Signal Offset — Location in the process of signal data
integer

This property is read-only.

Location in the process image from which the data is available after the execution of the
EtherCAT Init block.

Signal Type — Data type for EtherCAT data
character vector

This property is read-only.

Simulink data type for the EtherCAT data.

Type Size (bits) — Size of EtherCAT data type
integer

This property is read-only.

Size in bits of the EtherCAT data type.

Signal Dimension — Dimension of the signal
integer

10 EtherCAT Blocks

10-12

This property is read-only.

The EtherCAT blocks support vectors and scalars (vectors of dimension 1).

Sample Time — Rate at which this block is executed
numeric

This property is read-only.

This rate is the execution rate of the EtherCAT task, as specified in the Beckhoff TwinCAT
configurator.

See Also
EtherCAT Init | EtherCAT PDO Transmit

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

 EtherCAT PDO Receive

10-13

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT PDO Transmit
Send data to slave device represented by process data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT PDO Transmit block transmits computed data to a particular variable in the
EtherCAT slave device.

The block parameter dialog box has two sections, parameters and signal information.
When you specify an EtherCAT network and device variable name:

• The EtherCAT PDO Receive block mask is updated with the selected signal name.
• The signal information in the block parameter dialog box is updated to reflect the

device variable.

Note If an error occurs while the software parses the configuration file specified in the
EtherCAT Init block, this block shows an error message.

Ports

Input
D — Data to transmit to slave device
[double]

Vector of data to transmit to the EtherCAT slave device.

10 EtherCAT Blocks

10-14

Parameters
Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Signal name — EtherCAT device variable name
character vector

From the list, select the EtherCAT device variable name.

The block parameter dialog box updates the read-only signal information to reflect the
device variable that you selected.

For a mapping of EtherCAT configurator components to Simulink Real-Time blocks and
block attributes, see “EtherCAT Configurator Component Mapping” on page 9-26.

For a mapping of Simulink data types to EtherCAT data types, see “EtherCAT Data Types”
on page 9-27.

Signal Offset — Location in the process of signal data
integer

This property is read-only.

Location in the process image from which the data is available after the execution of the
EtherCAT Init block.

Signal Type — Data type for EtherCAT data
character vector

This property is read-only.

Simulink data type for the EtherCAT data.

Type Size (bits) — Size of EtherCAT data type
integer

 EtherCAT PDO Transmit

10-15

This property is read-only.

Size in bits of the EtherCAT data type.

Signal Dimension — Dimension of the signal
integer

This property is read-only.

The EtherCAT blocks support vectors and scalars (vectors of dimension 1).

Sample Time — Rate at which this block is executed
numeric

This property is read-only.

This rate is the execution rate of the EtherCAT task, as specified in the Beckhoff TwinCAT
configurator.

See Also
EtherCAT Init | EtherCAT PDO Receive

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

10 EtherCAT Blocks

10-16

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Get State
Get state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Get State block returns the state of the EtherCAT network.

Ports

Output
State — State received from the EtherCAT network
1 | 2 | 4 | 8

State Value Description
INIT 1 Initialization – The system finds slave devices and

initializes the communication controller.
PREOP 2 Preoperational — The system uses the communication

controller to exchange system-specific initialization data.
In this state, the network cannot transmit or receive signal
data.

SAFEOP 4 Safe operational — The network is running and ready for
full operation. The master sends input data to the slave
device. The slave device output remains in a safe state.

OP 8 Operational — The network is in full operation. The master
sends input data to the slave device. The slave device
responds with output data.

 EtherCAT Get State

10-17

Parameters
Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

See Also
EtherCAT Init | EtherCAT Set State

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

10 EtherCAT Blocks

10-18

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Set State
Set state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Set State block sets the state of the EtherCAT network to the value passed
in through the New State port.

Ports

Input
New State — State transmitted to the EtherCAT network
1 | 2 | 4 | 8

State Value Description
INIT 1 Initialization – The system finds slave devices and

initializes the communication controller.
PREOP 2 Preoperational — The system uses the communication

controller to exchange system-specific initialization data.
In this state, the network cannot transmit or receive signal
data.

SAFEOP 4 Safe operational — The network is running and ready for
full operation. The master sends input data to the slave
device. The slave device output remains in a safe state.

OP 8 Operational — The network is in full operation. The master
sends input data to the slave device. The slave device
responds with output data.

 EtherCAT Set State

10-19

Output
Prev State — Previous state of the network
1 | 2 | 4 | 8

This port transmits the value of the previous setting of the New State port.

Error — Report an EtherCAT state error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value.

Parameters
Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Timeout — Time to wait for the network to change state
integer

Enter the number of seconds to wait for the EtherCAT network state to transition.

Set the timeout to 0 to return immediately. If you specify a nonzero Timeout value, in the
Configuration Parameters Solver pane, set the Fixed-step size parameter to a value
larger than the Timeout value.

Programmatic Use
Block Parameter: timeout

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

10 EtherCAT Blocks

10-20

Programmatic Use
Block Parameter: sample_time

See Also
EtherCAT Get State | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

 EtherCAT Set State

10-21

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Sync SDO Upload
Read data synchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SDO Upload block selects a CANopen register by Index value in the
specified EtherCAT slave and sends a read request. The block then waits until it receives
a response or until the timeout period is over.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports

Output
Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device.

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list
of error codes, see “EtherCAT Error Codes” on page 9-29.

Parameters
Index — Index of CANopen register
integer

10 EtherCAT Blocks

10-22

Specify the decimal index of the CANopen register.

If you specify an invalid index, the block returns a nonzero value through the Error
output.
Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzero value through the Error
output.
Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a
nonzero value through the Error output.
Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter a value of 1. EtherCAT blocks support only scalars and vectors.
Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

 EtherCAT Sync SDO Upload

10-23

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SDO Download

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com

10 EtherCAT Blocks

10-24

https://www.ethercat.org
https://www.beckhoff.com

www.acontis.com/eng

Introduced in R2010b

 EtherCAT Sync SDO Upload

10-25

http://www.acontis.com/eng

EtherCAT Sync SDO Download
Transmit data synchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SDO Upload block selects a CANopen register by Index value in the
specified EtherCAT slave and sends a write request. The block then waits until it receives
a response or until the timeout period is over.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports

Input
Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device.

Output
Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list
of error codes, see “EtherCAT Error Codes” on page 9-29.

10 EtherCAT Blocks

10-26

Parameters
Index — Index of CANopen register
integer

Specify the decimal index of the CANopen register.

If you specify an invalid index, the block returns a nonzero value through the Error
output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzero value through the Error
output.

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a
nonzero value through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

 EtherCAT Sync SDO Download

10-27

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SDO Upload

10 EtherCAT Blocks

10-28

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

 EtherCAT Sync SDO Download

10-29

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Async SDO Upload
Read data asynchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Async SDO Upload block selects a CANopen register by Index value in the
specified EtherCAT slave and sends a read request. It then immediately returns whatever
value was returned from the device on an earlier call to the block.

Ports

Input
Enable — Enables block to upload data
boolean

When true, the block uploads data.

Output
Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device.

Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

• 0 — Mailbox transfer object idle, transfer not running

10 EtherCAT Blocks

10-30

• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Parameters
Index — Index of CANopen register
integer

Specify the decimal index of the CANopen register.

If you specify an invalid index, the block returns the value 3 through the Status output.
Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns the value 3 through the Status
output.
Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns the
value 3 through the Status output.
Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

 EtherCAT Async SDO Upload

10-31

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

See Also
EtherCAT Async SDO Download | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

10 EtherCAT Blocks

10-32

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

 EtherCAT Async SDO Upload

10-33

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Async SDO Download
Transmit data asynchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Async SDO Download block selects a CANopen register by Index value in
the specified EtherCAT slave and sends a write request. The block then immediately
continues processing its input data.

Ports

Input
Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device.

Enable — Enables block to download data
boolean

When true, the block downloads data.

Output
Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

• 0 — Mailbox transfer object idle, transfer not running

10 EtherCAT Blocks

10-34

• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Parameters
Index — Index of CANopen register
integer

Specify the decimal index of the CANopen register.

If you specify an invalid index, the block returns the value 3 through the Status output.
Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns the value 3 through the Status
output.
Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns the
value 3 through the Status output.
Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

 EtherCAT Async SDO Download

10-35

Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains CANopen register
character vector

From the list, select the name of the slave that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

See Also
EtherCAT Async SDO Upload | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

10 EtherCAT Blocks

10-36

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2010b

 EtherCAT Async SDO Download

10-37

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Sync SSC/SoE Upload
Read data synchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SSC/SoE Upload block provides synchronous SERCOS interface
(SErial Real time COmmunication Specification) over EtherCAT (SoE) upload. The block
selects an IDN in the specified slave and sends an upload (read) request. The block then
waits until it receives a response to the request or until the timeout period expires.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports

Output
Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device. The data signal has the type
specified in Data Type and vector dimension given by Dimension.

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list
of error codes, see “EtherCAT Error Codes” on page 9-29.

10 EtherCAT Blocks

10-38

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the
IDN as a character vector that represents a 16-bit integer (according to IEC 61800 -7
-204), such as S-0-0150 or P-0-0150 with:

• First field (bit 15): S for Standard data, P for Product specific data
• Second field (bit 14 - 12): 0..7 for Parameter set
• Third field (bit 11 - 0): 0..4095 for Data block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive
or motor channels. The drive number is the 0-based index of the drive or motor channel
on this slave at which this block is aimed. In SoE terminology, the drive is the logic that
sends control signals to the motor. Typically, this logic is a small processor inside the
slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of
the IDN and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a
nonzero value through the Error output.

 EtherCAT Sync SSC/SoE Upload

10-39

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation
for the description of the IDN and the number of data type values (the dimension) it uses.
Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited. The EtherCAT Sync SSC/SoE Download block and the EtherCAT Sync
SSC/SoE Uploadblock require at least three steps of the main EtherCAT processing task.
Select a sample time that is three times that main task sample time, or the model can
overload and stop.

10 EtherCAT Blocks

10-40

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SSC/SoE Download

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

 EtherCAT Sync SSC/SoE Upload

10-41

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Sync SSC/SoE Download
Transmit data synchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SSC/SoE Download block provides synchronous SERCOS interface
(SErial Real time COmmunication Specification) over EtherCAT (SoE) download. The
block selects an IDN in the specified slave and sends a download (write) request. The
block then waits until it receives a response to the request or until the timeout period
expires.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports

Input
Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device. The data signal has the type specified
in Data Type and vector dimension given by Dimension.

Output
Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list
of error codes, see “EtherCAT Error Codes” on page 9-29.

10 EtherCAT Blocks

10-42

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the
IDN as a character vector that represents a 16-bit integer (according to IEC 61800 -7
-204), such as S-0-0150 or P-0-0150 with:

• First field (bit 15): S for Standard data, P for Product specific data
• Second field (bit 14 - 12): 0..7 for Parameter set
• Third field (bit 11 - 0): 0..4095 for Data block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive
or motor channels. The drive number is the 0-based index of the drive or motor channel
on this slave at which this block is aimed. In SoE terminology, the drive is the logic that
sends control signals to the motor. Typically, this logic is a small processor inside the
slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of
the IDN and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a
nonzero value through the Error output.

 EtherCAT Sync SSC/SoE Download

10-43

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation
for the description of the IDN and the number of data type values (the dimension) it uses.
Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited. The EtherCAT Sync SSC/SoE Download block and the EtherCAT Sync
SSC/SoE Uploadblock require at least three steps of the main EtherCAT processing task.
Select a sample time that is three times that main task sample time, or the model can
overload and stop.

10 EtherCAT Blocks

10-44

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Init | EtherCAT Sync SSC/SoE Upload

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

 EtherCAT Sync SSC/SoE Download

10-45

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Async SSC/SoE Upload
Read data asynchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SSC/SoE Upload block provides asynchronous SERCOS interface
(SErial Real time COmmunication Specification) over EtherCAT (SoE) upload. The block
selects an IDN in the specified slave and sends an upload (read) request. After sending
the request, the block immediately returns whatever value was returned from the device
on an earlier call to the block.

Ports

Input
Enable — Enables block to upload data
boolean

When true, the block uploads data.

Output
Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device. The data signal has the type
specified in Data Type and vector dimension given by Dimension.

Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

10 EtherCAT Blocks

10-46

• 0 — Mailbox transfer object idle, transfer not running
• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list
of error codes, see “EtherCAT Error Codes” on page 9-29.

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the
IDN as a character vector that represents a 16-bit integer (according to IEC 61800 -7
-204), such as S-0-0150 or P-0-0150 with:

• First field (bit 15): S for Standard data, P for Product specific data
• Second field (bit 14 - 12): 0..7 for Parameter set
• Third field (bit 11 - 0): 0..4095 for Data block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive
or motor channels. The drive number is the 0-based index of the drive or motor channel
on this slave at which this block is aimed. In SoE terminology, the drive is the logic that
sends control signals to the motor. Typically, this logic is a small processor inside the
slave.

 EtherCAT Async SSC/SoE Upload

10-47

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of
the IDN and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a
nonzero value through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation
for the description of the IDN and the number of data type values (the dimension) it uses.
Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

10 EtherCAT Blocks

10-48

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Async SSC/SoE Download | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

 EtherCAT Async SSC/SoE Upload

10-49

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

EtherCAT Async SSC/SoE Download
Transmit data asynchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SSC/SoE Download block provides asynchronous SERCOS interface
(SErial Real time COmmunication Specification) over EtherCAT (SoE) download. The
block selects an IDN in the specified slave and sends a download (write) request. After
sending the request, the block immediately continues processing its input data.

Ports

Input
Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device. The data signal has the type specified
in Data Type and vector dimension given by Dimension.

Enable — Enables block to download data
boolean

When true, the block downloads data.

Output
Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

10 EtherCAT Blocks

10-50

• 0 — Mailbox transfer object idle, transfer not running
• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list
of error codes, see “EtherCAT Error Codes” on page 9-29.

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the
IDN as a character vector that represents a 16-bit integer (according to IEC 61800 -7
-204), such as S-0-0150 or P-0-0150 with:

• First field (bit 15): S for Standard data, P for Product specific data
• Second field (bit 14 - 12): 0..7 for Parameter set
• Third field (bit 11 - 0): 0..4095 for Data block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks only apply for motor controllers. A single slave can support one or more drive
or motor channels. The drive number is the 0-based index of the drive or motor channel
on this slave at which this block is aimed. In SoE terminology, the drive is the logic that
sends control signals to the motor. Typically, this logic is a small processor inside the
slave.

 EtherCAT Async SSC/SoE Download

10-51

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, check the slave documentation for the description of
the IDN and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a
nonzero value through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, check the slave documentation
for the description of the IDN and the number of data type values (the dimension) it uses.
Enter a value of 1. EtherCAT blocks support only scalars and vectors.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT Ethernet card identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the
EtherCAT Init block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Slave Name — Name of slave that contains the IDN
character vector

From the list, select the name of the slave that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

10 EtherCAT Blocks

10-52

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

See Also
EtherCAT Async SSC/SOE Upload | EtherCAT Init

Topics
“EtherCAT Configurator Component Mapping” on page 9-26
“EtherCAT Data Types” on page 9-27

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/eng

Introduced in R2018b

 EtherCAT Async SSC/SoE Download

10-53

https://www.ethercat.org
https://www.beckhoff.com
http://www.acontis.com/eng

TCP, UDP

55

Real-Time TCP Communication
Support

• “TCP Transport Protocol” on page 11-2
• “Troubleshoot TCP Block Configuration” on page 11-4

11

TCP Transport Protocol
The Simulink Real-Time software supports communication from the target computer to
other systems or devices using Transmission Control Protocol (TCP). TCP provides
ordered and error-checked packet transport.

TCP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly
known as TCP/IP.

• Stream — TCP is a stream-oriented protocol.

TCP is a long stream of data that flows from one end of the network to the other.
Another long stream of data flows in the other direction. The TCP stack at the
transmitting end is responsible for breaking the stream of data into packets and
sending those packets. The stack at the receiving end is responsible for reassembling
the packets into a data stream using information in the packet headers.

• Connection — TCP is a connection-based protocol.

In TCP, the two ends of the communication link must be connected throughout the
communication.

• Error Detection — TCP detects errors.

TCP packets contain a unique sequence number. The starting sequence number is
communicated to the other side at the beginning of communication. The receiver
acknowledges each packet, and the acknowledgment contains the sequence number
so that the sender knows which packet was acknowledged. Therefore, packets lost on
the way can be retransmitted. The sender knows that they did not reach their
destination because the sender did not receive an acknowledgment. The receiver can
reassemble in order packets that arrive out of sequence. Timeouts can be established,
because the sender knows from the first few packets how long it takes to transmit a
packet and receive its acknowledgment.

TCP communication is like a telephone conversation. A continuous connection is required,
and two-way streaming data (the words spoken by each party) are exchanged.

When describing TCP, the words Reliable and Unreliable have a specific meaning.

Note Reliable means that if a packet is not acknowledged, it is retransmitted. It does not
mean that the protocol always succeeds.

11 Real-Time TCP Communication Support

11-2

Unreliable means that if too many packets are not acknowledged, the protocol can time
out. It does not mean that the protocol packets usually fail to arrive.

You can construct a packet from Simulink data types such as double, int8, int32,
uint8, or a combination of these data types. The Simulink Real-Time block library
provides blocks for combining various signals into one packet (packing), and then
transmitting it. It also provides blocks for splitting a packet (unpacking) into its
component signals that can then be used in a Simulink model.

The preceding discussion applies to both communication with a shared Ethernet board
and communication with a dedicated Ethernet board. Consider adding a dedicated
Ethernet board for enhanced performance over communication using a shared Ethernet
board. Shared TCP communication shares bandwidth with the link between the
development and target computers.

See Also
Byte Unpacking | Byte Packing | Byte Reversal/Change Endianess | TCP Receive | TCP
Client Configure | TCP Send | TCP Server Configure

External Websites
• www.ietf.org/rfc/rfc793.txt

 See Also

11-3

https://www.ietf.org/rfc/rfc793.txt

Troubleshoot TCP Block Configuration
I want to resolve TCP block configuration problems.

What This Issue Means
TCP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly
known as TCP/IP. If the block configuration or signal connections for TCP blocks do not
follow best practices, the blocks generate errors. Apply these guidelines:

• TCP Blocks Run Only on Target Computer

The Simulink Real-Time TCP blocks function only when executed on the target
computer. When simulated on the development computer, they do nothing.

• Excluded Ports When Using Host-Target Connection

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Real-Time reserves these
ports for its own use.

• Order of Operation of TCP Blocks

The real-time application must execute the TCP configure blocks before it executes the
TCP Send or TCP Receive blocks.

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

Try This Workaround
You can use a dedicated Ethernet card for TCP communication while using another card
for communicating between the development and target computers. If there is a duplicate
subnet calculated in a TCP block, you can get the following error during model
initialization:

The subnet in this block is the same as or is a subset of the subnet
calculated in ''block''. The block calculates the
subnet by ANDing the IP address bitwise with the subnet mask.

11 Real-Time TCP Communication Support

11-4

Check the IP address and subnet you assigned to the target computer Ethernet card in
the configuration block. The TCP implementation requires that the two communication
channels use separate subnets.

The block calculates the subnet by ANDing the IP address bitwise with the subnet mask
for each card. For example, these specifications result in the same subnet for both cards.

E1 (development-target): IP address: 192.168.0.25
 Subnet mask: 255.255.255.0

 Calculated Subnet: 192.168.0.0

E2 (TCP): IP address: 192.168.0.26
 Subnet mask: 255.255.255.0

 Calculated Subnet: 192.168.0.0

Try a configuration such as the following:

E1 (development-target): IP address: 192.168.0.25
 Subnet mask: 255.255.255.0

 Calculated Subnet: 192.168.0.0

E2 (TCP): IP address: 192.168.0.26
 Subnet mask: 255.255.255.2

 Calculated Subnet: 192.168.0.2

In some networks, the development computer must also be in the subnet where the TCP
communication occurs. You can either add a second network card to the development
computer or provide a gateway device to create a dedicated network for TCP
communication.

See Also
TCP Client | TCP Client Configure | TCP Receive | TCP Send | TCP Server | TCP Server
Configure

More About
• “TCP/IP and UDP Interface” (Instrument Control Toolbox)

 See Also

11-5

• “TCP/IP Communication” (MATLAB)

11 Real-Time TCP Communication Support

11-6

TCP Blocks

12

IP Config
Initialize Ethernet network interface to use for IP communication in real-time applications
Library: Simulink Real-Time / TCP

Description
The IP Config block configures a dedicated Ethernet network for real-time operation.

The combination of Local IP Address and Subnet mask must be unique across all
Ethernet cards in the target computer, including the card for communicating between the
development and target computers. Distinguish cards by specifying a different subnet for
each. The subnet is the IP address masked by the subnet mask.

Parameters
Local IP Address — IP address for the Ethernet interface
x.x.x.x

Enter the IP address for the dedicated Ethernet board.

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

Programmatic Use
Block Parameter: ipAdd

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: snMask

12 TCP Blocks

12-2

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: gwAdd

PCI bus — PCI bus number of Ethernet card
0 (default) | 0–31

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | 0–31

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

See Also
SimulinkRealTime.target.getPCIInfo

Topics
on page 11-4
on page 13-15

Introduced in R2017a

 IP Config

12-3

TCP Client
Configure TCP client
Library: Simulink Real-Time / TCP

Description
Configure a TCP client application. You must have already configured a network interface
for IP by the IP Config block.

Ports

Input
Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the
block does not connect.

Output
Status — Device returns a status of not connected or connected
0 | 1

The status value is one of:

• 0 — Not connected
• 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

12 TCP Blocks

12-4

Parameters
Client IP address — IP address of the client device that is being configured
x.x.x.x

If you are using the Ethernet connection between the development and target computers,
this value must match the value of the TcpIpTargetAddress target setting. If you are
using a dedicated Ethernet card, this value must match the Local IP Address parameter
in the IP Config block for the network interface.

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

Programmatic Use
Block Parameter: clientAdd

Client local port — IP port of the client device that is being configured
1–65535

The combination of Client IP address and Client local port must be unique.

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves
these ports for its own use.

Programmatic Use
Block Parameter: clientPort

Remote server IP address — IP address of the server device
x.x.x.x

Enter the IP address of the server to which you want to connect the client.

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

Programmatic Use
Block Parameter: remoteAdd

Remote server port — Port number of the server device
1–65535

Enter the port number of the server to which you want to connect the client.

 TCP Client

12-5

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves
these ports for its own use.

Programmatic Use
Block Parameter: remotePort

See Also
IP Config | Target Settings

Topics
“Troubleshoot TCP Block Configuration” on page 11-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

12 TCP Blocks

12-6

https://www.ietf.org/rfc/rfc793.txt

TCP Client Configure
Configure a TCP client application that uses the specified Ethernet interface
Library: Simulink Real-Time / TCP

Description
Configure a TCP client application and initialize a network interface for the application.

The combination of Client IP Address and Subnet mask must be unique across all
Ethernet cards in the target computer, including the card for communicating between the
development and target computers. Distinguish cards by specifying a different subnet for
each. The subnet is the IP address masked by the subnet mask.

The Simulink Real-Time TCP blocks function only when executed on the target computer.
When simulated on the development computer, they do nothing.

Ports

Input
Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the
block does not connect.

Output
Status — Device returns a status of not connected or connected
0 | 1

The status value is one of:

 TCP Client Configure

12-7

• 0 — Not connected
• 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

Parameters
Use host-target connection — Use Ethernet connection between development
and target computers
'off' (default) | 'on'

Dependency

When you select this parameter, it deactivates the Client IP address, Subnet mask,
Gateway, PCI bus, and PCI slot parameters and excludes the ports 22222 and 22223
from use by TCP.

Programmatic Use
Block Parameter: useHostTargetConn

Client IP address — IP address of the client device that is being configured
x.x.x.x

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: clientAddress

Client local port — IP port of the client device that is being configured
1–65535

The combination of Client IP address and Client local port must be unique.

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves
these ports for its own use.

12 TCP Blocks

12-8

Programmatic Use
Block Parameter: clientPort

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

Gateway to access a different subnet. The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: Gateway

Remote server IP address — IP address of the server device
x.x.x.x

Enter the IP address of the server to which you want to connect the client.

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

Programmatic Use
Block Parameter: remoteAddress

Remote server port — Port number of the server device
1–65535

Enter the port number of the server to which you want to connect the client.

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves
these ports for its own use.

 TCP Client Configure

12-9

Programmatic Use
Block Parameter: remotePort

PCI bus — PCI bus number of dedicated Ethernet card
0 (default) | 0–31

Enter the PCI bus number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: PciBus

Slot — PCI slot number of dedicated Ethernet card
0 (default) | 0–31

Enter the PCI slot number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: PciSlot

Function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

See Also
SimulinkRealTime.target.getPCIInfo | TCP Receive | TCP Send

Topics
“Troubleshoot TCP Block Configuration” on page 11-4

External Websites
www.ietf.org/rfc/rfc793.txt

12 TCP Blocks

12-10

https://www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

 TCP Client Configure

12-11

TCP Receive
Receive data over TCP network from a remote device
Library: Simulink Real-Time / TCP

Description
Receive data sent from a remote client device to a server application on a target
computer.

Ports

Input
Enable — Allow data reception
integer

When Enable > 0, the block attempts to receive data sent to the remote device.

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

Output
Data — Data that is received from the remote client
vector

The parameter Receive width determines the maximum size of the data vector.
Data Types: uint8

Length — Actual size of data vector
double

12 TCP Blocks

12-12

To test whether the number of data items exceeds the width of the data output port, use
this value.

Parameters
Receive using — List of IP address and port pairs
x.x.x.x:y

This property is read-only.

The block receives the list of IP address and port pairs from the TCP configuration blocks
in the model.

Programmatic Use
Block Parameter: socketAddress,socketPort

Receive width — Maximum expected length of data vector
1–65504

Maximum number of uint8 values that the block expects to receive from the client
device.

Programmatic Use
Block Parameter: rcvWidth

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampleTime

See Also
TCP Client Configure | TCP Server Configure

Topics
“Troubleshoot TCP Block Configuration” on page 11-4

 TCP Receive

12-13

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

12 TCP Blocks

12-14

https://www.ietf.org/rfc/rfc793.txt

TCP Send
Send data over TCP network to a remote device
Library: Simulink Real-Time / TCP

Description
Send data from a server application on a target computer to a remote client device.

Ports

Input
Enable — Allow data transmission
integer

When Enable > 0, the block attempts to transmit data to the remote device.

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

Data — Data to transmit over the TCP network
vector

Vector of length Length to transmit to the client device.
Data Types: uint8

Length — Length of data vector
double

Number of uint8 values to transmit to the client device.

 TCP Send

12-15

Output
Status — Number of bytes sent
double

Returns the number of uint8 values transmitted to the client device.

Parameters
Send using — List of IP address and port pairs
x.x.x.x:y

This property is read-only.

The block receives the list of IP address and port pairs from the TCP configuration blocks
in the model.

Programmatic Use
Block Parameter: socketAddress,socketPort

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampleTime

See Also
TCP Client Configure | TCP Server Configure

Topics
“Troubleshoot TCP Block Configuration” on page 11-4

External Websites
www.ietf.org/rfc/rfc793.txt

12 TCP Blocks

12-16

https://www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

 TCP Send

12-17

TCP Server
Configure TCP server application
Library: Simulink Real-Time / TCP

Description
Configure a TCP server application. This block assumes that a network interface has been
configured for IP by the IP Config block.

Ports

Input
Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the
block does not connect.

Output
Status — Device returns a status of not connected or connected
0 | 1

The status value is one of:

• 0 — Not connected
• 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

12 TCP Blocks

12-18

Parameters
Server IP address — IP address of the server device that is being configured
x.x.x.x

If you are using the Ethernet connection between the development and target computers,
this value must match the value of the TcpIpTargetAddress target setting. If you are
using a dedicated Ethernet card, this value must match the Local IP Address parameter
in the IP Config block for the network interface.

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

Programmatic Use
Block Parameter: serverAddress

Server port — IP port of the server device that is being configured
1–65535

The combination of Server IP address and Server port must be unique.

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves
these ports for its own use.

Programmatic Use
Block Parameter: serverPort

See Also
IP Config | Target Settings

Topics
“Troubleshoot TCP Block Configuration” on page 11-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

 TCP Server

12-19

https://www.ietf.org/rfc/rfc793.txt

TCP Server Configure
Configure TCP server application that uses the specified Ethernet interface
Library: Simulink Real-Time / TCP

Description
Configure a TCP server application and initialize a network interface for the application.

The combination of Server IP Address and Subnet mask must be unique across all
Ethernet cards in the target computer, including the card for communicating between the
development and target computers. Distinguish cards by specifying a different subnet for
each. The subnet is the IP address masked by the subnet mask.

The Simulink Real-Time TCP blocks function only when executed on the target computer.
When simulated on the development computer, they do nothing.

Ports

Input
Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the
block does not connect.

Output
Status — Device returns a status of not connected or connected
0 | 1

The status value is one of:

12 TCP Blocks

12-20

• 0 — Not connected
• 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable
input of the associated TCP Send and TCP Receive blocks.

Parameters
Use host-target connection — Use Ethernet connection between development
and target computers
'off' (default) | 'on'

Selecting the Use host-target connection parameter disables the Server IP address,
Subnet mask, PCI bus, and PCI slot parameters and excludes the ports 22222 and
22223 from use by TCP.

Programmatic Use
Block Parameter: useHostTargetConn

Server IP address — IP address of the server device that is being configured
x.x.x.x

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

To enable this parameter, clear the Use host-target connection parameter.

Programmatic Use
Block Parameter: serverAddress

Server port — IP port of the server device that is being configured
1–65535

The combination of Server IP address and Server port must be unique.

When you select the Use host-target connection parameter in the TCP configure
blocks, you cannot use ports 22222 and 22223. Simulink Simulink Real-Time reserves
these ports for its own use.

Programmatic Use
Block Parameter: serverPort

 TCP Server Configure

12-21

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

To activate this parameter, clear the Use host-target connection parameter.
Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

Gateway to access a different subnet. The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

To activate this parameter, clear the Use host-target connection parameter.
Programmatic Use
Block Parameter: Gateway

PCI bus — PCI bus number of dedicated Ethernet card
0 (default) | 0–31

Enter the PCI bus number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.
Programmatic Use
Block Parameter: PciBus

Slot — PCI slot number of dedicated Ethernet card
0 (default) | 0–31

Enter the PCI slot number for the dedicated Ethernet card.

To activate this parameter, clear the Use host-target connection parameter.
Programmatic Use
Block Parameter: PciSlot

Function — PCI function number of Ethernet card
0 (default) | integer

12 TCP Blocks

12-22

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

See Also
SimulinkRealTime.target.getPCIInfo | TCP Receive | TCP Send

Topics
“Troubleshoot TCP Block Configuration” on page 11-4

External Websites
www.ietf.org/rfc/rfc793.txt

Introduced in R2017a

 TCP Server Configure

12-23

https://www.ietf.org/rfc/rfc793.txt

Real-Time UDP Communication
Support

• “UDP Transport Protocol” on page 13-2
• “UDP Data Exchange with Shared Ethernet Board” on page 13-4
• “UDP Communication Setup” on page 13-11
• “UDP and Variable-Size Signals” on page 13-13
• “Troubleshoot UDP Block Configuration” on page 13-15

13

UDP Transport Protocol
The Simulink Real-Time software supports communication from the target computer to
other systems or devices with User Datagram Protocol (UDP) packets. UDP is a transport
protocol that provides a direct method to send and receive packets over an IP network.
UDP uses this direct method at the expense of reliability by limiting error checking and
recovery.

UDP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly
known as UDP/IP.

• Packet — UDP is a packet-oriented protocol. You divide the data into packets and the
protocol sends them to the receiver.

• Connectionless — UDP is a connectionless protocol. The protocol sends a packet to the
receiver without checking to see if the receiver is ready to receive a packet. If the
receiver is not ready, the packet is lost.

• No Error Detection— UDP does not support error detection. The protocol sends
packets and does not track them. If packets arrive out of sequence, or are lost in
transmission, the receiving end (or the sending end) does not know.

UDP is like sending letters by mail, without a return address. If the other party is not
found, or the letter is lost in transit, it is discarded.

When describing UDP, the words reliable and unreliable have a specific meaning.

• Reliable means that the protocol is not guaranteed to succeed. It does not mean that
the protocol always succeeds.

• Unreliable means that protocol packets can fail to arrive without the system detecting
that the packets did not arrive. It does not mean that the protocol packets usually fail
to arrive.

UDP continues to receive packets as long as the receiver is active and processes data as
quickly as it arrives.

UDP is a commonly used transport layer because of its lightweight nature. When used
from Simulink Real-Time, UDP gives the real-time application a good chance of
succeeding in real-time execution. Also, the datagram nature of UDP is optimal for
sending samples of data from the real-time application generated by the Simulink Coder
software. If the real-time application cannot process the data as quickly as it arrives, only
the most recent packet is used. The earlier packets are ignored.

13 Real-Time UDP Communication Support

13-2

You can construct a packet from Simulink data types such as double, int8, int32,
uint8, or a combination of these data types. The Simulink Real-Time block library
provides blocks for combining various signals into one packet (packing), and then
transmitting it. It also provides blocks for splitting a packet (unpacking) into its
component signals that can then be used in a Simulink model.

The preceding information applies to communication with a shared Ethernet board and
communication with a dedicated Ethernet board. Consider adding a dedicated Ethernet
board for enhanced performance over communication using a shared Ethernet board.
Shared UDP communication shares bandwidth with the link between the development
and target computers.

See Also
Byte Unpacking | Byte Packing | Byte Reversal/Change Endianess | UDP Configure | UDP
Receive | UDP Send

More About
• “Target to Host Transmission using UDP”
• “Target to Target Transmission using UDP”
• “UDP Communication Setup” on page 13-11
• “UDP and Variable-Size Signals” on page 13-13

 See Also

13-3

UDP Data Exchange with Shared Ethernet Board
In this section...
“Data Transferred” on page 13-4
“Set Up udpsendreceiveA” on page 13-5
“Set Up udpsendreceiveB” on page 13-8

This example shows how to set up two-way data exchange with an Ethernet board that is
shared with the connection between the development and target computers. Using this
configuration, you can communicate between two Simulink Real-Time systems, between
the Simulink Real-Time and Simulink products, or between two Simulink models. When
one or both of the systems are running as a non-real-time Simulink model, be sure to set
the sample time.

This example does not require a UDP Configure block because the example uses the
connection between the development and target computers. To perform real-time UDP
data transfer with a dedicated Ethernet board, see “Target to Target Transmission using
UDP”.

The example models are named udpsendreceiveA and udpsendreceiveB. Replace the
port and IP address examples with ports and addresses as required by your network.

Data Transferred
The models transfer two different data sets between them, one data set from
udpsendreceiveA to udpsendreceiveB and another data set in the opposite direction.

For this example, the inputs are generated with Simulink Constant blocks that use the
MATLAB random number function (rand). The Simulink Coder software uses this function
during code generation to generate random numbers. To generate the vector of uint8
(3x3), use the MATLAB function:

uint8(255 * rand(3,3))

because 255 is the maximum value for an unsigned 8-bit integer. The other values are
generated similarly.

udpsendreceiveA to udpsendreceiveB

The UDP data send is 75 bytes wide. The data to transfer is in the following formats.

13 Real-Time UDP Communication Support

13-4

• [3 3] of uint8 (9 bytes)
• [1 1] of uint16 (2 bytes)
• [2 4] of double (64 bytes)

When packed, the data is aligned on 1-byte boundaries.

udpsendreceiveB to udpsendreceiveA

The UDP data to be sent is 79 bytes wide. The data to transfer is in the following formats.

• [4 1] of single (16 bytes)
• [2 2] of double (32 bytes)
• [2 2] of uint32 (16 bytes)
• [5 3] of int8 (15 bytes)

When packed, the data is aligned on 2-byte boundaries. A zero-valued pad byte is added
during packing.

Set Up udpsendreceiveA
The final udpsendreceiveA is shown in the figure.

The tables list the parameters for the send and receive sides of the model.

 UDP Data Exchange with Shared Ethernet Board

13-5

udpsendreceiveA Send Side

Block Parameter Value
Byte Packing Output port (packed)

data type
'uint8'

Input port (unpacked)
data types (cell array)

{'uint8', 'uint16', 'double'}

Byte alignment 1
UDP Send Local IP address Use host-target connection

Local port -1 (autoselect)
To IP address 192.168.0.2
To port 25000

13 Real-Time UDP Communication Support

13-6

Block Parameter Value
Sample time (-1 for
inherited)

0.01

• The Length input port receives the output of a Width block that calculates the width
of the signal connected to the Data port.

• The Byte Packing block settings match the Byte Unpacking block of
udpsendreceiveB.

udpsendreceiveA Receive Side

Block Parameter Value
UDP Receive Local IP address Use host-target

connection
Local port 25000
Receive width 80
Receive from any source off
From IP address 192.168.0.1
Sample time (-1 for inherited) 0.01

Byte Unpacking Output port (unpacked) data
types (cell array)

{'single', 'double',
'uint32', 'int8'}

Output port (unpacked)
dimensions (cell array)

{4, [2 2], [2 2], [5 3]}

Byte alignment 2

• The second output port of the UDP Receive block is sent into a terminator. You can use
this output to determine when a packet has arrived. The same is true for the outputs
of the Byte Unpack block, which in a real model would be used in the model.

• The Receive width of the UDP Receive block matches the output port width of the
Byte Packing block in udpsendreceiveB.

• The Byte Unpacking block settings match the settings of the Byte Packing block of
udpsendreceiveB.

• The number of unpacked bytes is 79. The byte alignment is 2, so the Byte Unpacking
block assumes that the input vector includes a pad 0 to align the vector on an even-
numbered boundary.

 UDP Data Exchange with Shared Ethernet Board

13-7

Set Up udpsendreceiveB
The final udpsendreceiveB model is shown in the figure.

The tables list the parameters for the receive side and the send side of the model.

udpsendreceiveB Receive Side

Block Parameter Value
UDP Receive Local IP address Use host-target

connection
Local port 25000
Receive width 75
Receive from any source off
From IP address 192.168.0.2

13 Real-Time UDP Communication Support

13-8

Block Parameter Value
Sample time (-1 for inherited) 0.01

Byte Unpacking Output port (unpacked) data
types (cell array)

{'uint8', 'int16',
'double'}

Output port (unpacked)
dimensions (cell array)

{[3 3], 1, [2 4]}

Byte alignment 1

• The second output port of the UDP Receive block is sent into a terminator. You can use
this output to determine when a packet has arrived. The same is true for the outputs
of the Byte Unpack block, which in a real model would be used in the model.

• The Receive width of the UDP Receive block matches the output port width of the
Byte Packing block in udpsendreceiveA.

• The Byte Unpacking block settings match the Byte Packing block in
udpsendreceiveA.

udpsendreceiveB Send Side

Block Parameter Value
Byte Packing Output port (packed)

data type
'uint8'

Input port (unpacked)
data types (cell array)

{'single', 'double', 'uint32',
'int8'}

Byte alignment 2
UDP Send Local IP address Use host-target connection

Local port -1 (autoselect)
To IP address 192.168.0.1
To port 25000
Sample time (-1 for
inherited)

0.01

• The Length input port receives the output of a Width block that calculates the width
of the signal connected to the Data port.

• The Byte Packing block settings match the settings of the Byte Unpacking block of
udpsendreceiveA.

 UDP Data Exchange with Shared Ethernet Board

13-9

• The number of unpacked bytes is 79. The byte alignment is 2, so the Byte Packing
block pads the output vector with 0 to align on an even-numbered boundary.

See Also
Byte Packing | Byte Unpacking | UDP Configure | UDP Receive | UDP Send

More About
• “Target to Host Transmission using UDP”
• “Target to Target Transmission using UDP”
• “UDP Transport Protocol” on page 13-2
• “UDP Communication Setup” on page 13-11
• “UDP and Variable-Size Signals” on page 13-13

13 Real-Time UDP Communication Support

13-10

UDP Communication Setup
The infrastructure provided in the Simulink Real-Time Library for UDP communication
consists mainly of two blocks: a UDP Send block and a UDP Receive block. These blocks
are in the Simulink Real-Time Library, available from the Simulink Library under
Simulink Real-Time. You can also access them from the MATLAB command line by
typing:

slrtlib

The blocks are located under the Real-Time UDP heading in the library. The UDP Send
block takes as input a vector of type uint8, which it sends. The UDP Receive block
outputs a vector of uint8. To convert arbitrary Simulink data types into this vector of
uint8, use a Byte Packing block. To convert a vector of uint8s back into arbitrary
Simulink data types, use a Byte Unpacking block.

If you are using a dedicated Ethernet port for UDP communication, use a UDP Configure
block to configure the Ethernet interface.

You can have up to 32 UDP blocks in a model—UDP Send and UDP Receive blocks
combined in arbitrary order, plus the optional UDP Configure block.

To communicate with big-endian architecture systems, use the Byte Reversal/Change
Endianess block. Your model does not need this block for communicating between 80x86-
based computer systems running either the Simulink Real-Time kernel or the Microsoft
Windows® operating system.

The blocks work from within the Simulink environment and from a real-time application
running under the Simulink Real-Time system. Be cautious about transmitting data
between a Simulink simulation and a real-time application, or using two Simulink models.
A Simulink model is not a real-time model and can run several times faster or slower than
a real-time application. Set the sample time of the UDP Send and UDP Receive blocks and
the sample time of the Simulink model so that the blocks can communicate.

• You cannot configure two UDP Receive blocks with the same local port. For example,
two UDP Receive blocks cannot have the same local port and different IP addresses.

• You cannot configure two UDP Send blocks with the same local port. For example, two
UDP Send blocks cannot have the same local port and different IP addresses.

 UDP Communication Setup

13-11

See Also
Byte Packing | Byte Unpacking | UDP Configure | UDP Receive | UDP Send

More About
• “Target to Host Transmission using UDP”
• “Target to Target Transmission using UDP”
• “UDP Transport Protocol” on page 13-2

13 Real-Time UDP Communication Support

13-12

UDP and Variable-Size Signals
The Simulink Real-Time UDP sublibrary does not directly support variable-size signals.
The UDP Send block input port accepts only fixed-size signals.

To send variable-size signals though UDP, determine the maximum number of elements of
a fixed-size input signal that you expect to connect to the block. Then use the second
input, Length, to specify the number of elements of this input signal to send through
UDP.

This example configures the MATLAB Function block to accept a variable-size signal and
maps that signal to a fixed-size output signal. It outputs the number of relevant elements.
You can output the fixed-size output signal and number of elements to the inputs of the
UDP Send block.

1 To accept a variable-size input signal, create a MATLAB Function block.
2 In the MATLAB Function block, enter code like the following code. In this code, the

maximum size of the variable-size input signal is 9.

function [y,y_length] = fcn(u)
%#codegen
y = uint8(zeros(9,1));
y_length = length(u);
for a = 1:y_length
 y(a) = u(a);
end

3 In the MATLAB Function Editor, select Tools > Edit Data/Ports. In Ports and Data
Manager, select the data u, and then select the corresponding Variable size check
box.

4 Select the data y and enter the size of the variable-size data input signal in the
corresponding Size parameter. For this example, the size value is 9.

5 Provide a variable-size signal source for the MATLAB Function block.

 UDP and Variable-Size Signals

13-13

See Also
MATLAB Function | UDP Send

13 Real-Time UDP Communication Support

13-14

Troubleshoot UDP Block Configuration
I want to resolve UDP Configure block configuration problems.

What This Issue Means
The Real-Time UDP Configure block configures a dedicated Ethernet network for real-
time UDP operation. If the block configuration does not distinguish cards by specifying a
different subnet for each, errors occur.

Note There is a limitation on the number of UDP Send and UDP Receive blocks in a
model. The total number of these blocks in a model is limited to 2048.

Try This Workaround
To identify UDP Configure block configuration problems, check for these issues.

Duplicate Subnet Calculated in Block

You can use a dedicated Ethernet card for TCP communication while using another card
for communicating between the development and target computers. During model
initialization, you get this error:

The subnet in this block is the same as or is a subset of the subnet
calculated in ''block''. The block calculates the subnet by ANDing the
IP address bitwise with the subnet mask.

Check the IP address and subnet that you assigned to the target computer Ethernet card
in the configuration block. The UDP implementation requires that the two communication
channels use separate subnets.

The block calculates the subnet by ANDing the IP address bitwise with the subnet mask
for each card. For example, these specifications result in the same subnet for both cards:

E1 (development-target): IP address: 192.168.0.25
 Subnet mask: 255.255.255.0

 Calculated Subnet: 192.168.0.0

E2 (RT-UDP): IP address: 192.168.0.130

 Troubleshoot UDP Block Configuration

13-15

 Subnet mask: 255.255.255.0

 Calculated Subnet: 192.168.0.0

Try a configuration such as the following:

E1 (development-target): IP address: 192.168.0.25
 Subnet mask: 255.255.255.0

 Calculated Subnet: 192.168.0.0

E2 (RT-UDP): IP address: 192.168.0.130
 Subnet mask: 255.255.255.128

 Calculated Subnet: 192.168.0.128

In some networks, the development computer must also be in the subnet where the TCP
communication occurs. You can either add a second network card to the development
computer or provide a gateway device to create a dedicated network for TCP
communication.

Excluded Ports When Using Development-Target Computer Connection

When you use the same IP address as the communication channel between the
development and target computers, you cannot use ports 22222 and 22223. Simulink
Real-Time reserves these ports for its own use.

ENOPKTS Error

During real-time execution with a UDP model, you sometimes see the error ENOPKTS.
This error stops model execution. When too many packets are received and queued at the
UDP socket and too few packets are removed, this error occurs.

To address this issue, decrease the sample time of your UDP Receive block.

See Also

More About
• “TCP/IP and UDP Interface” (Instrument Control Toolbox)

13 Real-Time UDP Communication Support

13-16

Real-Time UDP Blocks

14

UDP Configure
Initialize Ethernet network interface to use for UDP communication in real-time
applications
Library: Simulink Real-Time / Real-Time UDP

Description
The Real-Time UDP Configuration block configures a dedicated Ethernet network for real-
time UDP operation.

The combination of Local IP Address and Subnet mask must be unique across all
Ethernet cards in the target computer, including the card for communicating between the
development and target computers. Distinguish cards by specifying a different subnet for
each. The subnet is the IP address masked by the subnet mask.

Parameters

General Parameters
Local IP Address — IP address for the Ethernet interface
x.x.x.x

Enter the IP address for the dedicated Ethernet board.

The addresses 0.0.0.0 and 255.255.255.255 are invalid local IP addresses.

Programmatic Use
Block Parameter: ipAdd

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

14 Real-Time UDP Blocks

14-2

Programmatic Use
Block Parameter: snMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.
Programmatic Use
Block Parameter: gwAdd

PCI bus — PCI bus number of Ethernet card
0 (default) | 0–31

Enter the PCI bus number for the Ethernet card.
Programmatic Use
Block Parameter: PciBus

Slot — PCI slot number of Ethernet card
0 (default) | 0–31

Enter the PCI slot number for the Ethernet card.
Programmatic Use
Block Parameter: PciSlot

Function — PCI function number of Ethernet card
0 | integer

Enter the PCI function number for the Ethernet card.
Programmatic Use
Block Parameter: PciFunction

Multicast Parameters
Enable multicast — Enables multicast UDP parameters and operations
off (default) | on

When you select Enable multicast, the UDP multicast parameters become visible.

 UDP Configure

14-3

Example: on

Programmatic Use
Block Parameter: enableMulticast

Multicast IP address list — Selects list of UDP multicast addresses
{'x.x.x.x'} | cell array of character vectors

Each IP address and corresponding mask parameter set configure the UDP multicast
operations. The multicast IP address and corresponding mask values are AND'ed, and the
packets to the destination addresses that match this value are sent through this interface.
In the example values, the two pairs of address and mask indicate that all packets sent to
the IP address corresponding to 224.0.1.xxx and 224.0.2.xxx are sent out through
the card at [5,0,0].

A limitation is that the combination of multicast IP and masks (multicast subnets) cannot
overlap with those values in other configuration blocks. Validation for this overlap follows
validation of the Local IP Address and subnet mask combinations.
Example: {'224.0.1.129','224.0.2.107'}

Programmatic Use
Block Parameter: multicastAdd

Mask — Selects the mask for UDP multicast addresses
{'x.x.x.x'} | cell array of character vectors

See description of Multicast IP address list parameter.
Example: {'255.255.255.0','255.255.255.0'}

Programmatic Use
Block Parameter: multicastMask

See Also
SimulinkRealTime.target.getPCIInfo | UDP Receive | UDP Send

Topics
“UDP Transport Protocol” on page 13-2
“Troubleshoot UDP Block Configuration” on page 13-15

14 Real-Time UDP Blocks

14-4

Introduced in R2016b

 UDP Configure

14-5

UDP Receive
Receive data over UDP network from a remote device
Library: Simulink Real-Time / Real-Time UDP

Description
The UDP Receive block receives data over a UDP network from a remote device. It can
receive data by using the connection between the development and target computers or
by using a dedicated Ethernet card. If you use a dedicated Ethernet card, add a UDP
Configure block to your model.

The parameter Local IP address applies only when the block executes on a target
computer. If your model is running in Simulink on the development computer, you can use
this block to transmit data to a remote device. In this case, the Windows operating system
determines the network connection.

Ports

Output
Data — Data received
vector

Vector of uint8 containing data received over the UDP network. If no new packet is
received, the data values are held. To determine whether a new packet has been received,
use the Length output port.
Data Types: uint8

Length — Number of bytes received
double

14 Real-Time UDP Blocks

14-6

Number of bytes in the new packet received, otherwise 0. If more bytes are received than
can be output through the receive port with width defined by Receive width, the excess
bytes are discarded.

Parameters

General Parameters
Local IP address — Destination IP address for receiving data
Use host-target connection (default)

When Local IP address is set to Use host-target connection, the block uses the
connection between the development and target computers. Otherwise, the block uses
the value that you set in the Local IP address parameter of the UDP Configure block.

Programmatic Use
Block Parameter: ipAddress

Local port — Destination UDP port through which to receive data
1–65535

Specifies UDP port through which to receive data.

Programmatic Use
Block Parameter: localPort

Receive width — Width of Data output vector
1–65504

Determines the width of the Data output vector. If this value is less than the number of
bytes in the received packet, the excess bytes are discarded.

Programmatic Use
Block Parameter: rcvWidth

Receive from any source — Causes receiver to accept data from any IP
address
on (default) | off

 UDP Receive

14-7

When Receive from any source is on, the block receives data from any accessible IP
address. When it is off, the block receives data from only the address that you specify in
From IP address.

To make the From IP address parameter visible, clear Receive from any source.

Programmatic Use
Block Parameter: rcvFmAny

From IP address — Source from which to receive data
0.0.0.0 (default) | x.x.x.x

Enter a valid IP address as a dotted decimal character vector, for example, 10.10.10.3.
You can also use a MATLAB expression that returns a valid IP address as a character
vector.

The default address, 0.0.0.0, causes the block to accept UDP packets from any
accessible device. If you set From IP address to a specific IP address, only packets
arriving from that IP address are received.

The address 255.255.255.255 is an invalid IP address.

To make this parameter visible, clear Receive from any source.

Programmatic Use
Block Parameter: fmAdd

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sampleTime

Multicast Parameters
Receive multicast — Enables multicast UDP parameters and receive operations
off (default) | on

When you select Enable multicast, the UDP multicast parameters become visible.
Example: on

14 Real-Time UDP Blocks

14-8

Programmatic Use
Block Parameter: rcvMulticast

Multicast group address — Multicast group to join
x.x.x.x | dotted decimal character vector

Enter a valid IP address as a dotted decimal character vector, for example, 224.0.0.0.

The UDP Receive block issues an error at model update if the group IP address is not a
valid multicast address in the range 224.0.0.0 through 239.255.255.255.
Example: 224.100.1.1

Programmatic Use
Block Parameter: multicastAddress

See Also
Byte Reversal/Change Endianess | Byte Unpacking | UDP Configure | UDP Send

Topics
“UDP Transport Protocol” on page 13-2
“Troubleshoot UDP Block Configuration” on page 13-15

Introduced in R2016b

 UDP Receive

14-9

UDP Send
Send data over UDP network to a remote device
Library: Simulink Real-Time / Real-Time UDP

Description
The UDP Send block sends data over a UDP network to a remote device. The block can
send data by using the connection between the development and target computers or by
using a dedicated Ethernet card. If you use a dedicated Ethernet card, add a UDP
Configure block to your model.

The parameter Local IP address applies only when the block executes on a target
computer. If your model is running in Simulink on the development computer, you can use
this block to transmit data to a remote device. In this case, the Windows operating system
determines the network connection.

To broadcast to all devices, set To IP address to 255.255.255.255, otherwise set To IP
address to a valid IP address.

Ports

Input
Data — Data to transmit
vector

Vector of uint8 containing data to transmit over the UDP network. To determine how
many bytes of data to transmit, use the Length input port.
Data Types: uint8

Length — Number of bytes of data to transmit
double

14 Real-Time UDP Blocks

14-10

Determines the number of bytes of data to transmit. Specify the width of the Data vector
as the maximum number of bytes that you expect to transmit.

Parameters
Local IP address — Source IP address for sending data
Use host-target connection (default)

When Local IP address is set to Use host-target connection, the block uses the
connection between the development and target computers. Otherwise, the block uses
the value that you set in the Local IP address parameter of the UDP Configure block.

If the UDP Configure block settings enable multicast operation, the Send block sends to
the IP address that is set to the group IP address. For real time multicast send capability,
the model requires a UDP Configure block. If the model does not include this block, a
warning about route unavailability is issued on the target.

Programmatic Use
Block Parameter: ipAddress

Local port — Source UDP port through which to transmit data
1–65535 | -1

Specifies local UDP port through which to transmit data.

The value −1 means that the block transmits using any available port.

Programmatic Use
Block Parameter: localPort

To IP address — IP address of target device
255.255.255.255 (default) | x.x.x.x

Specifies IP address of target device. To broadcast, send to 255.255.255.255.

Programmatic Use
Block Parameter: toAddress

To port — UDP port of target device
1–65535

 UDP Send

14-11

Specify the UDP port of target device. With To IP address, this parameter defines the
destination of the data transmission.

Programmatic Use
Block Parameter: toPort

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sampleTime

See Also
Byte Packing | Byte Reversal/Change Endianess | UDP Configure | UDP Receive

Topics
“UDP Transport Protocol” on page 13-2
“Troubleshoot UDP Block Configuration” on page 13-15

Introduced in R2016b

14 Real-Time UDP Blocks

14-12

Parallel Ports, PTP, SAE J1939,
Shared Memory

13

Parallel Ports

15

Using Parallel Ports

In this section...
“Introduction” on page 15-2
“Using the Parallel Port as an Interrupt Source” on page 15-3
“Using Add-On Parallel Port Boards” on page 15-4

Introduction
Most target computers have a parallel port that you can use for various devices. The
Simulink Real-Time block library provides blocks that enable you to use the parallel ports
of a target computer for digital input and output, and source interrupts.

Caution The parallel port is part of the motherboard on many computers. Be careful
when configuring the port and when connecting external devices to the port. Incorrect
connections to the port can damage your computer.

The Simulink Real-Time parallel port blocks assume that the connector to the parallel port
has one 25-pin connector whose pins have the following designations:

• Eight data pins
• Five status pins
• Four control pins
• Eight ground pins

Function Channel 1 2 3 4 5 6 7 8 Additional Pins
Bit 0 1 2 3 4 5 6 7

Digital Input 02 03 04 05 06 07 08 09
Digital Output 02 03 04 05 06 07 08 09
Digital Input (Status) 15 13 12 10 11
Digital Output (Control) 01 14 16 17
Interrupt 10

15 Parallel Ports

15-2

Using the Parallel Port as an Interrupt Source
To use the parallel port as an interrupt source, use pin 10 of the parallel port as the
interrupt source. Configure the Simulink Real-Time model as follows:

1 Select Simulation > Model Configuration Parameters.
2 Under node Code Generation, select node Simulink Real-Time Options.
3 In the Execution options pane:

• From Execution mode, select Real-Time.
• From Real-time interrupt source, select the IRQ level (typically 7).
• From I/O board generating the interrupt, select Parallel_Port.
• In PCI slot (-1: autosearch) or ISA base address, enter the base address of the

parallel port (typically 0x378).

If you want to use the Async IRQ Source block, you do not have to configure the model.
Instead, you can set the Async IRQ Source block parameters as follows:

• IRQ line number — Select the IRQ level (typically 7).

 Using Parallel Ports

15-3

• I/O board generating the interrupt — Select Parallel_Port.
• PCI slot — Enter the base address of the parallel port (typically 0x378).

Using Add-On Parallel Port Boards
To use an add-on parallel port board with the parallel port blocks, configure the base
address for the board as follows:

1 To get the base address of a board, in the MATLAB Command Window, call the
function SimulinkRealTime.target.getPCIInfo with the 'verbose' option.
For example:

tg = slrt;
getPCIInfo(tg, 'verbose')

2 Identify the base address for the add-on parallel port board.
3 In your model, open the parallel port block and set the value of the Base address

parameter to Other.

The Alternate base address parameter is displayed.
4 In the Alternate base address parameter, enter the base address you identified in

step 2.
5 Configure the rest of the block as desired.

Note You cannot use add-on parallel port boards as interrupt sources. You also cannot
trigger the execution of a model with these boards.

15 Parallel Ports

15-4

Parallel Port Blocks

16

Parallel Port Digital Input
Parallel Port Digital Input block

Library
Simulink Real-Time Library for Parallel Port

Scaling Input to Output
I/O Module Input Block Output Data Type Scaling
TTL Double (Format: 8 1-bit

Channels)
Double:
TTL low = 0.0

TTL high = 1.0
uint8 (Format: One 8-bit
Port)

uint8:
TTL low corresponding bit is
clear

TTL high corresponding bit
is set

Block Parameters
Base address

Select a parallel port base address. This address depends on the target computer
BIOS. From the list, select one of the following. If your base address is not one of the
supplied standard base addresses, select Other and enter your base address in
Alternate base address.

16 Parallel Port Blocks

16-2

• 0x3bc
• 0x378
• ox278
• Other

Alternate base address
Enter an alternate parallel port base address, in hexadecimal. This parameter appears
only if you select Other for Base address. For example,

0x300

Format
From the list, select one of the following modes to specify how to treat data:

• 8 1–bit Channels

Treats data as individual bits. Configures block to accept up to eight 1-bit
channels.

• One 8–bit Port

Treats data as a single byte. Configures block to accept one 8-bit port.

Channels
Enter a vector of numbers between 1 and 8. This parameter appears only if you select
8 1–bit Channels for Format. For example,

[1, 3]

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

Topics
“Using Parallel Ports” on page 15-2

 Parallel Port Digital Input

16-3

Introduced in R2007a

16 Parallel Port Blocks

16-4

Parallel Port Digital Input Status Bits
Parallel Port Digital Input Status Bits block

Library
Simulink Real-Time Library for Parallel Port

Scaling Input to Output
I/O Module Input Block Output Data Type Scaling
TTL Double (Format: 5 1-bit

Channels)
Double:
TTL low = 0.0

TTL high = 1.0
uint8 (Format: One 5-bit
Port)

uint8:
TTL low corresponding bit is
clear

TTL high corresponding bit
is set

Block Parameters
Base address

Select a parallel port base address. This address depends on the target computer
BIOS. From the list, select one of the following. If your base address is not one of the
supplied standard base addresses, select Other and enter your base address in
Alternate base address.

 Parallel Port Digital Input Status Bits

16-5

• 0x3bc
• 0x378
• ox278
• Other

Alternate base address
Enter an alternate parallel port base address, in hexadecimal. This parameter appears
only if you select Other for Base address. For example,

0x300

Format
From the list, select one of the following modes to specify how to treat data:

• 5 1–bit Channels

Treats data as individual bits. Configures block to accept up to five 1-bit channels.
• One 5–bit Port

Treats data as a single byte. Configures block to accept one 5-bit port.

Channels
Enter a vector of numbers between 1 and 5. This parameter appears only if you select
5 1–bit Channels for Format. For example,

[1, 3]

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

Topics
“Using Parallel Ports” on page 15-2

Introduced in R2007a

16 Parallel Port Blocks

16-6

Parallel Port Digital Output
Parallel Port Digital Output block

Library
Simulink Real-Time Library for Parallel Port

Scaling Output to Input
I/O Module Output Block Input Data Type Scaling
TTL Double (Format: 8 1-bit

Channels)
Double:
< 0.5 = TTL low

> 0.5 = TTL high
uint8 (Format: One 8-bit
Port)

uint8:
Bit clear = TTL low

Bit set = TTL high

Block Parameters
Base address

Select a parallel port base address. This address depends on the target computer
BIOS. From the list, select one of the following. If your base address is not one of the
supplied standard base addresses, select Other and enter your base address in
Alternate base address.

 Parallel Port Digital Output

16-7

• 0x3bc
• 0x378
• ox278
• Other

Alternate base address
Enter an alternate parallel port base address, in hexadecimal. This parameter appears
only if you select Other for Base address. For example,

0x300

Format
From the list, select one of the following modes to specify how to treat data:

• 8 1–bit Channels

Treats data as individual bits. Configures block to accept up to eight 1-bit
channels.

• One 8–bit Port

Treats data as a single byte. Configures block to accept one 8-bit port.

Channels
Enter a vector of numbers between 1 and 8. This parameter appears only if you select
5 1–bit Channels for Format. For example,

[1, 3]

Initial value vector
The initial value vector contains the initial voltage values for the output channels.
Enter a scalar or a vector that is the same length as the channel vector. If you specify
a scalar value, that value is replicated as the initial value over the channel vector. The
channels are set to the initial values between the time the model is downloaded and
the time it is started.

Final action vector
The final action vector controls the behavior of the channel at model termination.
Enter a scalar or a vector that is the same length as the channel vector. If you specify
a scalar value, that setting is replicated over the channel vector. If you specify a value
of 1, the corresponding channel is reset to the value specified in the initial value

16 Parallel Port Blocks

16-8

vector. If you specify a value of -1, the block sets the channel to the value specified in
the Final value vector value for that channel. If you specify a value of 0, the channel
remains at the last value attained while the model was running.

Final value vector
The final value vector contains the final value for each output channel. Enter a scalar
or a vector that is the same length as the channel vector. If you specify a scalar value,
that setting is replicated over the channel vector. If the Final action vector is -1, the
block sets the channel to this value on model termination.

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

Topics
“Using Parallel Ports” on page 15-2

Introduced in R2007a

 Parallel Port Digital Output

16-9

Parallel Port Digital Output Control Bits
Parallel Port Digital Output Control Bits block

Library
Simulink Real-Time Library for Parallel Port

Scaling Output to Input
I/O Module Output Block Input Data Type Scaling
TTL Double (Format: 4 1-bit

Channels)
Double:
< 0.5 = TTL low

> 0.5 = TTL high
uint8 (Format: One 4-bit
Port)

uint8:
Bit clear = TTL low

Bit set = TTL high

Block Parameters
Base address

Select a parallel port base address. This address depends on the target computer
BIOS. From the list, select one of the following. If your base address is not one of the
supplied standard base addresses, select Other and enter your base address in
Alternate base address.

16 Parallel Port Blocks

16-10

• 0x3bc
• 0x378
• ox278
• Other

Alternate base address
Enter an alternate parallel port base address, in hexadecimal. This parameter appears
only if you select Other for Base address. For example,

0x300

Format
From the list, select one of the following modes to specify how to treat data:

• 4 1–bit Channels

Treats data as individual bits. Configures block to accept up to four 1-bit channels.
• One 4–bit Port

Treats data as a single byte. Configures block to accept one 4-bit port.

Channels
Enter a vector of numbers between 1 and 4. This parameter appears only if you select
4 1–bit Channels for Format. For example,

[1, 3]

Initial value vector
The initial value vector contains the initial voltage values for the output channels.
Enter a scalar or a vector that is the same length as the channel vector. If you specify
a scalar value, that value is replicated as the initial value over the channel vector. The
channels are set to the initial values between the time the model is downloaded and
the time it is started.

Final action vector
The final action vector controls the behavior of the channel at model termination.
Enter a scalar or a vector that is the same length as the channel vector. If you specify
a scalar value, that setting is replicated over the channel vector. If you specify a value
of 1, the corresponding channel is reset to the value specified in the initial value
vector. If you specify a value of -1, the block sets the channel to the value specified in

 Parallel Port Digital Output Control Bits

16-11

the Final value vector value for that channel. If you specify a value of 0, the channel
remains at the last value attained while the model was running.

Final value vector
The final value vector contains the final value for each output channel. Enter a scalar
or a vector that is the same length as the channel vector. If you specify a scalar value,
that setting is replicated over the channel vector. If the Final action vector is -1, the
block sets the channel to this value on model termination.

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

Topics
“Using Parallel Ports” on page 15-2

Introduced in R2007a

16 Parallel Port Blocks

16-12

Precision Time Protocol

• “Precision Time Protocol” on page 17-2
• “Synchronize Timestamps Across Data-Gathering Network” on page 17-5
• “Data Acquisition and Data Analysis Example Description” on page 17-18
• “Troubleshoot Precision Time Protocol Configuration” on page 17-27
• “Prerequisites, Limitations, and Unsupported Features” on page 17-31

17

Precision Time Protocol
Measurement and control systems increasingly use distributed system technologies. To
distribute measurement or control tasks over interconnected computing devices, such
systems maintain a system-wide sense of time. Simulink Real-Time uses the Precision
Time Protocol (PTP) to synchronize the PTP clock of each computer to a reference time.
The PTP clock of a Simulink Real-Time target computer is the clock on the PTP network
card.

PTP (IEEE 1588) is a protocol that synchronizes PTP clocks throughout a computer
network. The current version of PTP (IEEE 1588-2008) describes a hierarchical master-
slave architecture for clock distribution.

By design, this protocol is more accurate for local systems than the Network Time
Protocol (NTP) and more robust than the Global Positioning System (GPS). On a local area
network, the protocol achieves PTP clock accuracy in the submicrosecond range, making
it suitable for distributed measurement. When you use this protocol to synchronize
Simulink Real-Time applications across multiple target computers, it can synchronize
execution to under 10 µs.

Suppose that you are designing a control system for a wind power plant. To determine the
plant parameters, you attach sensors that acquire the data shown in the diagram.

17 Precision Time Protocol

17-2

To record the data and timestamps, you connect the sensors to a set of data acquisition
target computers. You interconnect the data acquisition computers through an Ethernet
network and a switch that supports the PTP protocol (a PTP transparent clock or
boundary clock). To access the data and timestamps, you connect the target computers to
a development computer through another Ethernet network and switch. On the
development computer, you run MATLAB to do the data analysis, including:

• Sorting by time the data recorded on the different computers to analyze the event
sequence over time.

• Filtering sensor data that have invalid (unsynchronized) timestamps.
• Integrating values of measured data collected at the same time from sensors

connected to different computers.

To synchronize the target computer PTP clocks, you create a Simulink Real-Time model
for each target computer. Each model uses the following PTP blocks:

• IEEE 1588 Ethernet — Run PTP protocol with Raw Ethernet as transport protocol.
This block communicates with the corresponding blocks on the other target computers
and determines the time offset that synchronizes them.

 Precision Time Protocol

17-3

• IEEE 1588 Read Parameter — Output a Precision Time Protocol parameter value. Of
the possible output values, you select PTP time (nanosecond).

For debugging, you can configure a separate IEEE 1588 Read Parameter block to read
other values, such as Protocol state.

• IEEE 1588 Sync Execution — Synchronize model execution to Precision Time Protocol
clock. You can now make measurements at the same time step.

• IEEE 1588 Sync Status — Output the synchronization status of the Precision Time
Protocol. When the value is true, the data timestamps are synchronized to the
required precision.

As a best practice, for each model, you enclose the sensor block and the IEEE 1588 Read
Parameter and IEEE 1588 Sync Status blocks in an Atomic Subsystem block. By using the
Atomic Subsystem block, you bring the PTP timestamp as close as possible to the time of
the data measurement.

Finally, you build and download the real-time applications to each target computer, run
the applications, and collect and analyze the results at each valid timestamp. You use the
results to design a control system for the wind power generator.

See Also
Atomic Subsystem | IEEE 1588 Read Parameter | IEEE 1588 Ethernet | IEEE 1588 Sync
Execution | IEEE 1588 Sync Status

More About
• “Synchronize Timestamps Across Data-Gathering Network” on page 17-5
• “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”
• “Data Acquisition and Data Analysis Example Description” on page 17-18
• “Prerequisites, Limitations, and Unsupported Features” on page 17-31

External Websites
• standards.ieee.org

17 Precision Time Protocol

17-4

https://standards.ieee.org

Synchronize Timestamps Across Data-Gathering
Network

This example shows a data acquisition target computer that transmits timestamped data
to a second target computer that analyzes the data.

Required Products: Simulink®, Simulink Real-Time™

Other Requirements:

• One Windows® development computer with an Ethernet card.
• Two Speedgoat target computers.
• At least one Intel® 82574 Ethernet card on each target computer
• One Ethernet card on each target computer dedicated to communication between the

development and target computers.
• One Ethernet switch.
• Four crossover Ethernet cables.

The real-time applications use Precision Time Protocol blocks to synchronize the Intel
82574 Ethernet card PTP clocks and the kernel clocks for each computer. You can log the
PTP timestamps from both computers and use them to associate transmitted data with
reference data.

Configure Hardware

Your Speedgoat target machines include at least two Ethernet cards installed, one of
them an Intel 82574 Ethernet card. Use the Intel 82574 Ethernet card for the PTP
network. Use the other to connect the two target computers through the Ethernet switch
to the development computer. The network looks like this figure.

 Synchronize Timestamps Across Data-Gathering Network

17-5

Required Information

To configure the network and your models for this example, collect the following
information for each target computer:

• Identifiers
• PTP card: Device name, PCI bus and slot numbers, MAC address that you assign to the

PTP card that is transmitting non-PTP data
• COM card: Device name, PCI bus and slot numbers, Ethernet index of the card

You can find the built-in MAC address of the PTP card from a source such as a bill of
materials or a label on the hardware. You can find the device name and the PCI bus and
slot numbers by using SimulinkRealTime.target.getPCIInfo. You can find the Ethernet
index of the communication card by using SimulinkRealTime.getTargetSettings.

Example Information

TargetPC1

17 Precision Time Protocol

17-6

Identifier — TargetPC1

PTP card

• Device name — Intel 82574L
• PCI bus — 5
• PCI slot — 0
• MAC Address — [EEPROM}

COM card

• Device name — Intel 82579LM
• Ethernet index — 0
• PCI bus — 0
• PCI slot — 25
• MAC address — N/A

TargetPC2

Identifier — TargetPC2

PTP card

• Device name — Intel 82574L
• PCI bus — 0
• PCI slot — 52
• MAC Address — 68:05:CA:31:B9:EF

COM card

• Device name — Intel 82541GI_LF
• Ethernet index — 0
• PCI bus — 16
• PCI slot — 4
• MAC address — N/A

 Synchronize Timestamps Across Data-Gathering Network

17-7

Hardware Configuration

1 Connect an Ethernet cable between the PTP card in TargetPC1 and the PTP card in
TargetPC2. This connection creates the PTP network. To configure the IEEE 1588
Ethernet blocks in the two real-time applications, you must have the PCI bus and PCI
slot of these cards.

2 Connect an Ethernet cable from the Comm card in TargetPC1 to the Ethernet
switch.

3 Connect an Ethernet cable from the Comm card in TargetPC2 to the switch.
4 Connect an Ethernet cable from the switch to the development computer. These

connections complete the communication network between the development
computer and the target computers.

5 Start the two target computers. Use slrtexplr to connect to them. If you cannot
establish communication with a target computer, verify the Ethernet index assigned
to the communication port.

Configure Real-Time Applications

In this example, the system contains two real-time applications running on separate
target computers. The data acquisition application transmits PTP and non-PTP data to the
data analysis application. To configure the data acquisition application, you must have the
MAC address of the PTP card that is installed in the data analysis target computer. The
data analysis application transmits only PTP data to the data acquisition application. To
configure the data analysis application, you can use the MAC address stored in the
EEPROM of the PTP card in the data acquisition target computer.

Configure Data Acquisition Application

To configure this application, first perform the steps in Configure Hardware. Collect the
PCI bus, PCI slot, and role of the Ethernet cards installed in the target computers.

The data acquisition application is ex_ptp_sync_src
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_sync_src')))). It runs on TargetPC1. To configure the application:

Set Configuration Parameters

1 Open ex_ptp_sync_src.
2 In the Configuration Parameters dialog box, open the Solver pane.

17 Precision Time Protocol

17-8

matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_ptp_sync_src')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_ptp_sync_src')))

3 Verify that Type is Fixed-step.
4 Verify that Fixed-step size (fundamental sample time) is set to an explicit value

and not to auto (best practice). Use the same sample time as in the data analysis
application.

5 Verify that Allow tasks to execute concurrently on target is set.
6 Take the defaults for the other settings.
7 Open the Simulink Real-Time Options pane.
8 Verify that Build for default target computer is cleared.
9 Verify that Specify target computer name is TargetPC1.
10 Verify that Execution mode is Real-Time.
11 Take the defaults for the other settings.

Configure PTP Blocks

1 Open the IEEE 1588 Ethernet block
2 Open the General pane.
3 From the information for the TargetPC1 PTP card, enter the values 5 and 0 for PCI

bus and PCI slot.
4 Verify that the IEEE 1588 Ethernet Sample time value is a multiple of the Fixed-

step size (fundamental sample time) value.
5 Verify that Sample time has the same value as in the data analysis model.
6 Open the Network parameters pane.
7 From the information for the TargetPC1 PTP card, in the Source MAC address

box, select EEPROM.
8 Verify that Destination MAC address is Standard PTP multicast.
9 Open the Clock parameters pane.
10 Verify that Timescale (epoch) is PTP (1970-01-01).
11 Verify that Delay measurement mechanism is Request-response.
12 Set the Slave only check box. This setting prevents the software from making this

node the master PTP clock node.
13 Open the Time intervals pane.
14 Verify that Announce interval (second), Sync interval (second), and Min delay

or pdelay request interval (second) are at least three times the Sample time
value.

 Synchronize Timestamps Across Data-Gathering Network

17-9

15 Verify that the intervals are integral multiples of Sample time.
16 Verify that the intervals have the same settings as in the data analysis model.
17 In the remaining top-level PTP blocks, verify that the Sample time value matches

that in the IEEE 1588 Ethernet block.
18 Open PTP Clock-Data Subsystem. For each block in the subsystem, verify that the

Sample time value matches that in the IEEE 1588 Ethernet block.

Configure Data Communication Blocks

1 From the information for the TargetPC2 PTP card, in the Create Ethernet Packet
block dialog box, set Destination MAC to macaddr('68:05:CA:31:B9:EF').

2 Set EtherType (use 0 for length) to hex2dec('0010'). Using this type
distinguishes the data-specific messages from the PTP-specific messages, which use
the same Ethernet card.

3 In the Ethernet Tx block, verify that the Sample time value matches that in the IEEE
1588 Ethernet block.

4 Save the updated model in your working folder. You cannot build and run a real-time
application in the examples folder.

Configure Data Analysis Application

To configure this application, first perform the steps in Configure Hardware. Collect the
PCI bus, PCI slot, and role of the Ethernet cards that are installed in the target
computers. To configure the PTP card in the data analysis target computer, use the MAC
address that you specified in the Create Ethernet Packet block of the data acquisition
application.

The data analysis application is ex_ptp_sync_sink
(open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_sync_sink')))). It runs on TargetPC2. To configure the application:

Set Configuration Parameters

1 Open ex_ptp_sync_sink.
2 In the Configuration Parameters dialog box, open the Solver pane.
3 Verify that Type is Fixed-step.
4 Verify that Fixed-step size (fundamental sample time) is set to an explicit value

(best practice) and not to auto. Use the same sample time as in the data acquisition
application.

17 Precision Time Protocol

17-10

matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_ptp_sync_sink')))
matlab:open_system(docpath(fullfile(docroot,'toolbox','xpc','examples','ex_ptp_sync_sink')))

5 Verify that Allow tasks to execute concurrently on target is set.
6 Take the defaults for the other settings.
7 Open the Simulink Real-Time Options pane.
8 Verify that Build for default target computer is cleared.
9 Verify that Specify target computer name is TargetPC2.
10 Verify that Execution mode is Real-Time.
11 Take the defaults for the other settings.

Configure PTP Blocks

1 Open the IEEE 1588 Ethernet block.
2 Open the General pane.
3 From the information for the TargetPC2 PTP card, enter the values 52 and 0 for PCI

bus and PCI slot.
4 Verify that the IEEE 1588 Ethernet Sample time value is a multiple of the Fixed-step

size (fundamental sample time) value.
5 Verify that Sample time has the same value as in the data acquisition IEEE 1588

Ethernet block.
6 Open the Network parameters pane.
7 In the Source MAC address box, select Specify.
8 From the information for the TargetPC2 PTP card, in the Specify source MAC

address text box, enter macaddr('68:05:CA:31:B9:EF'). You can enter an arbitrary
MAC address in this box, provided it is unique in the PTP network.

9 Verify that Destination MAC address is Standard PTP multicast.
10 Open the Clock parameters pane.
11 Verify that Timescale (epoch) is PTP (1970-01-01).
12 Verify that Delay measurement mechanism is Request-response.
13 Verify that Slave only is cleared. This setting allows the software to make this node

the master PTP clock node.
14 Open the Time intervals pane.
15 Verify that Announce interval (second), Sync interval (second), and Min delay

or pdelay request interval (second) are at least three times the Sample time
value.

 Synchronize Timestamps Across Data-Gathering Network

17-11

16 Verify that the intervals are integral multiples of Sample time.
17 Verify that the intervals have the same settings as in the data acquisition model.
18 In the remaining top-level PTP blocks, verify that the Sample time value matches

that in the IEEE 1588 Ethernet block.
19 Open PTP Clock-Data Subsystem. For each block in the subsystem, verify that the

Sample time value matches that in the IEEE 1588 Ethernet block.

Configure Data Communication Blocks

1 Open PTP Clock-Data Subsystem
2 Open the Ethernet Rx block.
3 Open the Rx pane and verify that the Sample time value matches that in the IEEE

1588 Ethernet block.
4 Open the Filter pane.
5 Verify that Filter criteria is Specify types to match.
6 Verifty that Receive these types (vector of types 0-65535) is

[hex2dec('0010')].
7 Save the updated model in your working folder. You cannot build and run a real-time

application in the examples folder.

Build, Download, and Run Real-Time Applications

In this example, the data acquisition application builds and is downloaded to TargetPC1.
The data analysis application builds and is downloaded to TargetPC2. To run these
applications, first perform the steps in Configure Real-Time Applications. MATLAB® and
Simulink Real-Time Explorer must be running in your working folder.

Build, download, and run the applications:

1 Start TargetPC1 and TargetPC2.
2 In the Explorer Targets pane, connect to TargetPC1 and TargetPC2.
3 In your working folder, open ex_ptp_sync_src and ex_ptp_sync_sink.
4 Build and download ex_ptp_sync_src to TargetPC1.
5 Build and download ex_ptp_sync_sink to TargetPC2.
6 In the Explorer Applications pane, for TargetPC1/ex_ptp_sync_src and

TargetPC2/ex_ptp_sync_sink, change the property Stop Time to Inf.

17 Precision Time Protocol

17-12

7 In the Explorer Applications pane, start ex_ptp_sync_src and
ex_ptp_sync_sink.

8 For both applications, waveform data starts streaming in the target scopes labeled
Data. However, the timestamps displayed as signal Time are not initially valid. The
two applications go through the following sequence of Sync Status and State
values:

1. Initialization:

• ex_ptp_sync_src State → 4 (LISTENING)
• ex_ptp_sync_src Sync Status → 0 (not synchronized)
• ex_ptp_sync_sink State → 4 (LISTENING)
• ex_ptp_sync_sink Sync Status → 0 (not synchronized)

2. Master allocation and synchronization

• ex_ptp_sync_sink State → 6 (MASTER)
• ex_ptp_sync_sink Sync Status → 1 (synchronized)

3. Slave allocation and synchronization

• ex_ptp_sync_src State → 9 (SLAVE)
• ex_ptp_sync_src Sync Status → 1 (synchronized)

For the data acquisition node (the slave node), the final state looks like this figure.

 Synchronize Timestamps Across Data-Gathering Network

17-13

For the data analysis node (the master node), the final state looks like this figure.

17 Precision Time Protocol

17-14

For this example, the sensor and reference Sine Wave blocks are set to the same
frequency and amplitude, but start at arbitrary times. The difference in start time causes
a phase difference between the sine waves. The phase difference appears on the Delta
scope as a waveform that settles to a constant amplitude.

The phase difference is constant because the IEEE 1588 Sync Execution blocks
synchronize the kernel clocks on the two target computers. If you do not include these

 Synchronize Timestamps Across Data-Gathering Network

17-15

blocks, the kernel clocks of the two target computers drift apart. As a result, the Delta
waveform shows a beat frequency.

With the IEEE 1588 Sync Execution block, you can make measurements across multiple
target computers at a synchronized time step. However, the kernel interrupt clock

17 Precision Time Protocol

17-16

controller can shorten some time steps up to 10% of the fundamental sample time,
resulting in a CPU overload.

See Also
IEEE 1588 Sync Execution | IEEE 1588 Ethernet | IEEE 1588 Read Parameter | IEEE
1588 Sync Status | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_data_sink'))) | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_data_src'))) | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_sync_sink'))) | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_sync_src')))

More About
• “Data Acquisition and Data Analysis Example Description” on page 17-18
• “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”
• “Precision Time Protocol” on page 17-2

 See Also

17-17

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_data_sink')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_data_sink')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_data_src')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_data_src')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_sink')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_sink')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_src')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_src')))

Data Acquisition and Data Analysis Example Description
This example features a data acquisition target computer that transmits timestamped
sensor data to a second target computer. The second target computer processes the
sensor data and displays the data and the difference between the sensor data and
reference data. Both target computers connect to a development computer. The
development computer runs Simulink and Simulink Real-Time Explorer to build,
download, and run real-time applications on each target computer. The real-time
applications use Precision Time Protocol (PTP) blocks to synchronize the PTP clocks and
kernel clocks on each computer.

Data Acquisition Application
The data acquisition application is a PTP slave node that acquires data from a sensor,
which a Sine Wave block represents. The application transmits the sensor data to the data
analysis application.

Top-Level Model

The PTP initialization block and the blocks that create and transmit the Ethernet packet
are in the top-level model:

• IEEE 1588 Ethernet — Configures the PTP network card clock as a slave clock.
• IEEE 1588 Read Parameter — Shows when the PTP clock has been allocated as a slave

clock (value 9). Configured as Read Protocol state.
• IEEE 1588 Sync Execution — Aligns the kernel clocks across multiple target

computers. The block output shows the difference between the following times:

• The PTP time at the real-time interrupt
• The nearest PTP time that is a multiple of the fundamental sample time

• Byte Packing — Packs the sensor data, timestamp, and synchronization status into an
Ethernet packet.

• Create Ethernet Packet — Addresses the Ethernet packet to the MAC address of the
data analysis application.

• Ethernet Tx — Transmits the Ethernet packet to the data-analysis target computer.

The Ethernet Tx block sends data packets through the same Ethernet connection as
the PTP blocks use to send PTP messages. To distinguish data packets from PTP

17 Precision Time Protocol

17-18

messages, the model assigns to the data packets Ethernet type hex2dec('0010').
This Ethernet type is different from the default Ethernet type of PTP packets
(hex2dec('88F7')).

• Outport — For data logging purposes, the top-level model propagates the major
signals to Outport blocks.

For debugging purposes, the top-level model includes two real-time Scope blocks:

• Sensor Data — Displays the sensor data in a graphic scope.
• Sensor PTP Data — Displays the PTP time, PTP synchronization status, PTP state,

and synchronization delta of the data acquisition model.

 Data Acquisition and Data Analysis Example Description

17-19

17 Precision Time Protocol

17-20

Atomic Subsystem

The PTP timestamp must align as closely as possible with the data source. For better
alignment, the model wraps the sensor data block and the lower-level PTP blocks in an
atomic subsystem:

• Sine Wave — Represents sensor data.
• IEEE 1588 Read Parameter — Generates the timestamp, configured as PTP Time

(nanosecond).
• IEEE 1588 Sync Status — Generates the synchronization status. When the PTP clock is

synchronized with the master PTP clock, the block output becomes 1.

Data Analysis Application
The data analysis application is a PTP master node that gets sensor data from an
emulator, a Sine Wave block. The application gets reference data from an emulator, a Sine
Wave block, and sensor data from an Ethernet Rx block. The application calculates the
difference between the reference data and the sensor data.

 Data Acquisition and Data Analysis Example Description

17-21

Top-Level Model

The PTP initialization block and the blocks that receive and process the data are in the
top-level model:

• IEEE 1588 Ethernet — Configures the PTP network card clock as a master clock.
• IEEE 1588 Read Parameter — Shows when the PTP clock has been allocated as a

master clock (value 6). Configured as Read Protocol state.
• IEEE 1588 Sync Execution — Aligns the kernel clocks across multiple target

computers. The block output shows the difference between the following times:

• The PTP time at the real-time interrupt
• The nearest PTP time that is a multiple of the fundamental sample time

• Extract Ethernet Packet — Extracts the Ethernet packet that is carrying the sensor
data.

• Byte Unpacking — Unpacks the sensor data, timestamp, and synchronization status
from the Ethernet packet.

• Sum — Calculates the difference between the sensor data and the reference data.

The Sum block provides input data for further processing. For example, you can plot
the sensor data, reference data, and difference against the timestamp to assess the
real-time behavior. You can also feed the difference data back through a control
system to change an actuator setting at the data acquisition site.

• Outport — For data logging purposes, the top-level model propagates the major
signals to Outport blocks.

For debugging purposes, the top-level model includes four real-time Scope blocks:

• Ref/Sensor Data — Displays the reference data and the sensor data together in a
graphic scope.

• Delta — Displays the difference between the reference data and the sensor data in a
graphic scope.

The Delta scope is configured with a long sample time. It captures long-period
differences between the sensor and reference data. If the frequency, phase, and
amplitude differences are constant, the scope displays a rectangular area. If the
differences are periodic, the scope displays a beat frequency.

• Ref PTP Data — Displays the PTP time, PTP synchronization status, PTP state, and
synchronization delta of the data analysis model.

17 Precision Time Protocol

17-22

• Sensor PTP Data — Displays the PTP time, PTP synchronization status, and
synchronization delta of the data acquisition model.

 Data Acquisition and Data Analysis Example Description

17-23

17 Precision Time Protocol

17-24

Atomic Subsystem

The PTP timestamp must align as closely as possible with the Ethernet receiver. For
better alignment, the model wraps the blocks representing the reference data source and
the lower-level PTP blocks in an atomic subsystem:

• Sine Wave — Represents reference data.
• IEEE 1588 Read Parameter — Generates the timestamp, configured as PTP Time

(nanosecond).
• IEEE 1588 Sync Status — Generates the synchronization status. When the PTP clock is

synchronized with the master PTP clock, the block output becomes 1.
• Ethernet Rx — Receives sensor data from the acquisition target computer. The
configured block filters out all packets except packets of Ethernet type
hex2dec('0010'). The default Ethernet type of PTP packets is hex2dec('88F7').

 Data Acquisition and Data Analysis Example Description

17-25

See Also
IEEE 1588 Ethernet | IEEE 1588 Read Parameter | IEEE 1588 Sync Execution | IEEE
1588 Sync Status | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_sync_sink'))) | open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples',
'ex_ptp_sync_src')))

More About
• “Synchronize Timestamps Across Data-Gathering Network” on page 17-5
• “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”

17 Precision Time Protocol

17-26

matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_sink')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_sink')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_src')))
matlab: open_system(docpath(fullfile(docroot, 'toolbox', 'xpc', 'examples', 'ex_ptp_sync_src')))

Troubleshoot Precision Time Protocol Configuration
I want to resolve IEEE 1588 block precision time protocol (PTP) configuration problems.

What This Issue Means
To troubleshoot your model, first familiarize yourself with the PTP standard, and then
with the specialized requirements of the Simulink Real-Time implementation. For more
information, see “Precision Time Protocol” on page 17-2 and PTP “Prerequisites,
Limitations, and Unsupported Features” on page 17-31.

Try This Workaround
To identify PTP model or configuration problems, check for these issues.

PTP Block Configuration in Model

• Configure all PTP nodes in a network with the same Delay measurement
mechanism. If you configure a slave node with a different setting from the master
node, the slave node enters the FAULTY state

• Configure all PTP nodes in a network with the same Timescale or Arbitrary
timescale epoch value. If you configure the master and slave nodes with differing
timescales, the representation of time in time-of-day format differs for the two nodes.

• Configure all nodes in the PTP networks with the same Announce interval and
Announce receipt timeout. Differing values of these parameters in a PTP network
can lead to unpredictable behavior.

• Avoid using inherited sample time everywhere in your model. Inherited sample time
occurs throughout your model when you make the following settings:

• Fixed step size → auto in the Configuration Parameters dialog box
• Sample time → -1 in all of the blocks of your model.

The sample time that Simulink calculates can be greater than the PTP message
transmission intervals, resulting in an unusable model.

• The PTP configuration subsystems include configuration blocks for the associated
transport protocol. If you use a separate Ethernet card for data transmission, include a
separate network configuration block. Assign it a Device ID different from the one
already in use by the PTP configuration block. Multiple network configuration blocks
with the same Device ID cause a build error.

 Troubleshoot Precision Time Protocol Configuration

17-27

• The PTP Over Ethernet block creates PTP messages with Ether type set to
hex2dec('88F7'). To use the same Ethernet card for PTP as for data transmission:

• In the Create Ethernet Packet block, set Ether type to a nonzero value that is
different from hex2dec('88F7') (for example, hex2dec(‘0010’).

• In the Ethernet Rx block, set Filter criteria to Specify types to match. Set
Receive these types to the value that you set in the Create Ethernet Packet block
(for example, [hex2dec('0010')]).

• If you include more than one slave node in the network, configure the master node to
use the standard PTP multicast address for transmitting messages. The master node
must transmit the same synchronization message to all the slaves.

• Using the IEEE 1588 Sync Execution block to make measurements across multiple
target computers at the same simulation step can lead to a CPU overload. Also, the
kernel interrupt clock controller can shorten some time steps up to 10% of the model
fundamental sample time.

If you get CPU overloads, consider decreasing the value of the Proportional gain
parameter of the IEEE 1588 Sync Execution block or increasing the sample time of
your real-time application.

• If you use the IEEE 1588 Sync Execution block in your model, configuring EtherCAT
distributed clocks in master shift mode in the same model produces a build error. To
include IEEE 1588 synchronized execution and EtherCAT distributed clocks in the
same model, use EtherCAT bus shift mode.

PTP Synchronization Accuracy

• The synchronization accuracy depends upon the value of Sync interval. The smaller
the value, the more accurate the synchronization. If your model fails to meet your
required synchronization accuracy, try decreasing the value of Sync interval.

• You can use IEEE 1588 Sync Execution block to synchronize two PTP models with
differing fundamental sample times. Their execution is synchronous at a PTP time
equal to the least common multiple of the two rates.

PTP Faulty States

• When a slave node enters the FAULTY state, look for one of these conditions:

• The slave node is configured with a different Delay measurement mechanism
setting from the master node setting.

17 Precision Time Protocol

17-28

• The slave node model sample time setting is greater than the master node Sync
interval setting.

• The slave node Announce interval setting is shorter than the master node
Announce interval setting.

• The slave is not receiving a response from the master to delay request messages
sent by the slave. This behavior occurs, for example, if the slave node is configured
to use a delay measurement mechanism setting different from the master node
setting.

• If the master node fails to read a required timestamp from the Ethernet card due to
contention for the timestamp register, the transmission can fail. After a master node
fails five consecutive times to transmit a Follow_Up, Delay_Resp, Pdelay_Resp, or
Pdelay_Resp_Follow_Up message to its slave nodes, it enters the FAULTY state. Try
these options:

• Reduce the number of slave nodes in the network.
• Shorten the sample time for the subsystem that represents the master node. The

master node cycles through the slave messages faster and reads the timestamp
register more often.

• Increase the Min delay or pdelay request interval of the slave nodes. The slave
nodes generate messages less often.

• Connect a peer-to-peer transparent PTP clock between the master and slave nodes.
Set Delay measurement mechanism to Peer-delay for all of the nodes. The
peer-to-peer transparent PTP clock has a separate timestamp register for each
port, taking the load off the master node.

For more information, see IEEE Std 1588-2008 Clause 10.

See Also
IEEE 1588 Adjust Time | IEEE 1588 Create Message | IEEE 1588 Ethernet | IEEE 1588
Process Message | IEEE 1588 Read Parameter | IEEE 1588 Real-Time UDP | IEEE 1588
Setup | IEEE 1588 Sync Error | IEEE 1588 Sync Execution | IEEE 1588 Sync Status

More About
• “Prerequisites, Limitations, and Unsupported Features” on page 17-31
• “Synchronize Timestamps Across Data-Gathering Network” on page 17-5

 See Also

17-29

• “IEEE® 1588™ Precision Time Protocol - Execution Synchronization”

External Websites
• standards.ieee.org

17 Precision Time Protocol

17-30

https://standards.ieee.org

Prerequisites, Limitations, and Unsupported Features
The Simulink Real-Time implementation of PTP enforces specific requirements and
limitations.

Prerequisites
• PTP functionality is available only with a Speedgoat target computer. If you have not

installed the Speedgoat library, attempting to build a real-time application with PTP
causes a build error.

• IEEE 1588 protocol support includes:

• PTP over UDP is supported on Intel 82574 Ethernet cards and Intel i210 Ethernet
cards.

• PTP over Ethernet is supported on Intel 82574 Ethernet cards.

To check that you have the required card, start your target computer. In the Command
Window, type:

tg = slrt;
getPCIInfo(tg, 'Ethernet')

Check that you see an entry like this entry:

Intel 82574L
 Bus 5, Slot 0, IRQ 10
 Ethernet controller
 VendorID 0x8086, DeviceID 0x10d3, SubVendorID 0x15bd,
 SubDeviceID 0x100a
 Released in: R2010a
 Notes: Intel 8254x Gigabit Ethernet series

Limitations
• The PTP network card clock acts as PTP clock. Only one clock is allowed per node.
• Run the model in Real-Time execution mode, not in Freerun mode or driven by an

external interrupt. In the latter two cases, the PTP message transmission intervals can
violate the PTP standard.

• You can include only one PTP configuration block in a model. You can run only one
real-time application on a target computer. If you have installed multiple PTP Ethernet

 Prerequisites, Limitations, and Unsupported Features

17-31

cards on your target computer, you can use only one of them for PTP at a time. You can
use the other PTP Ethernet cards for non-PTP purposes.

• The PTP message transmission intervals (Announce interval, Sync interval, and
Min delay or pdelay request interval) must be greater than the block sample time.
Too small a message transmission interval causes a model update error.

• Simulink Real-Time can transmit PTP messages only at a multiple of the block sample
time. If a transmission interval is not a multiple of the block sample time, PTP
transmits the messages at the nearest multiple to the specified transmission time. As a
best practice, specify all transmission intervals as integral multiples of the block
sample time.

• The specification requires that a PTP node issue messages within ±30% of the
message transmission intervals at least 90% of the time. To meet this requirement,
specify message transmission intervals (Announce interval, Sync interval, and Min
delay or pdelay request interval) at least three times the base sample time.

• The following factors limit accuracy:

• Network protocol stack delay fluctuation
• Network technology component delay fluctuations (switches, routers)
• Clock timestamp accuracy
• Clock oscillator stability

Use components that minimize these factors. For example, you can use a transparent
or boundary PTP clock to increase synchronization accuracy.

• A transparent PTP clock tracks the amount of time a PTP message takes to go
through the device. It passes that information to nodes receiving the message.

• A boundary PTP clock has multiple PTP ports that can act as a master clock or a
slave clock.

• Some systems require a PTP time source that is traceable to an International Atomic
Time (TAI) clock, such as a GPS signal. To support traceability, acquire a third-party
grandmaster PTP clock that provides this capability. In that case, a Simulink Real-Time
target computer running PTP acts only as a slave clock.

Unsupported Features
• Simulink Real-Time supports only PTP version 2, as defined in IEEE Std 1588-2008. If

a Simulink Real-Time PTP node receives a PTP version 1 message as defined in IEEE
Std 1588-2002, it ignores it.

17 Precision Time Protocol

17-32

• The Simulink Real-Time implementation of PTP does not support the following
functionality defined in IEEE Std 1588-2008:

• PTP variance computation, as described in IEEE Std 1588-2008 Clause 7.6.3.
• PTP nodes configured as one-step PTP clocks, as described in IEEE Std 1588-2008

Clause 3.1.21.

You can configure the master node as a two-step clock only, as described in IEEE
Std 1588-2008 Clause 3.1.47.

• PTP management messages, as described in IEEE Std 1588-2008 Clause 15.

A Simulink Real-Time PTP node cannot transmit a PTP management message.
When a Simulink Real-Time PTP node receives a PTP management message, it
ignores it.

• PTP signaling messages, as described in IEEE Std 1588-2008 Clause 13.12.

A Simulink Real-Time PTP node cannot transmit a PTP signaling message. When a
Simulink Real-Time PTP node receives a PTP signaling message, it ignores it.

• Optional features, as described in IEEE Std 1588-2008 Clause 16 and Clause 17.

See Also

Related Examples
• “Troubleshoot Precision Time Protocol Configuration” on page 17-27

 See Also

17-33

Precision Time Protocol Blocks

18

IEEE 1588 Real-Time UDP
Execute IEEE 1588 Precision Time Protocol
Library: Simulink Real-Time / IEEE 1588

Description
IEEE 1588 Real-Time UDP executes the PTP protocol, using UDP to send and receive the
protocol messages. The block communicates with the corresponding blocks on the other
target computers, determines the time offset that synchronizes them, and adjusts the time
offset.

Parameters
General

Local IP address — Select whether to use host-target connection for PTP
Specify | Use Host-Target connection

Select Specify to set individual parameters for the PTP interface. Select Use Host-Target
connection to use the host-target for the PTP interface.
Programmatic Use
Block Parameter: IpSource

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.
Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

18 Precision Time Protocol Blocks

18-2

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample_time

Network Parameters

IP address of port — IP address of PTP clock board
x.x.x.x

IP address of the Ethernet board, or node, carrying the PTP clock.

The addresses 0.0.0.0 and 255.255.255.255 are invalid IP addresses.

Programmatic Use
Block Parameter: IpAddress

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

 IEEE 1588 Real-Time UDP

18-3

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: Gateway

Source IP address of receive packets (set to 0.0.0.0 to receive all)
— IP address in receive blocks
0.0.0.0 (default) | x.x.x.x

IP address in UDP Receive blocks. The default value (0.0.0.0) specifies that the node is
to receive all packets sent to the ports assigned to PTP messages (ports 319 and 320).

Use a specific value for one-to-one communication. If the node is a master PTP clock
node, use a specific value only if exactly one slave is connected to the master clock node.

The address 255.255.255.255 is an invalid IP address.

Programmatic Use
Block Parameter: Receive1

Destination IP address of transmit packets — IP address in transmit
blocks
Standard PTP Multicast (224:0:1:129, 224:0:0:107) (default) | x.x.x.x

IP address in UDP Transmit blocks. Specifies the IP address of the other PTP computers
or devices to which to send the PTP packets. Select one of:

• Standard PTP Multicast (224:0:1:129, 224:0:0:107) (default) — Default
standard multicast IP address assigned to PTP. If you select this option, the PTP
packets are broadcast to all computers listening on the PTP ports (ports 319 and 320).
The destination IP addresses are:

• 224.0.1.129 for non-peer-delay measurement mechanism messages (Announce,
Sync, Follow_up, Delay_Req, Delay_Resp)

• 224.0.0.107 for peer-delay measurement mechanism messages (Pdelay_Req,
Pdelay_Resp, Pdelay_Resp_Follow_up)

• Specify — Explicitly specify the destination IP address.

Selecting Specify makes the Specify destination IP address parameter visible.

18 Precision Time Protocol Blocks

18-4

Programmatic Use
Block Parameter: dest_ip_select

Specify Destination IP address — IP address of transmit packets
255.255.255.255 (default) | x.x.x.x

The default value (255.255.255.255) specifies that the node is to broadcast the packets
to all listening nodes of the network. Use a specific value for one-to-one communication. If
the node is a master PTP clock node, use a specific value only if exactly one slave is
connected to the master clock node.

To make this parameter visible, set Destination IP address of transmit packets to
Specify.
Programmatic Use
Block Parameter: custom_dest_ip_addr

Clock Parameters

Timescale (epoch) — Origin point of the PTP timescale
PTP (1970-01-01) (default) | GPS (1980-06-01) | NTP (1900-01-01) | Specify

Specify the origin point of the PTP timescale. Select one of:

• PTP (1970-01-01) — Precision Time Protocol standard epoch, starting January 1,
1970.

• GPS (1980-06-01) — Global Positioning System standard epoch, starting June 1,
1980.

• NTP (1900-01-01) — Network Time Protocol standard epoch, starting January 1,
1900.

• Specify — Explicitly specify the timescale epoch.

Selecting Specify makes the Arbitrary timescale epoch (yyyy mm dd hh) parameter
visible.
Programmatic Use
Block Parameter: timescale

Arbitrary timescale epoch [yyyy mm dd hh] — Explicit origin point for PTP
timescale
[1970 01 01 00] (default) | [yyyy mm dd hh]

Specify the origin point for the PTP timescale, in year, month, day, and hour.

 IEEE 1588 Real-Time UDP

18-5

To make this parameter visible, set Timescale (epoch) to Specify.

Programmatic Use
Block Parameter: epoch

Delay measurement mechanism — Method of measuring link delays
Request-response (default) | Peer-delay

Specify the method of measuring link delays. Configure all PTP network nodes to use the
same link delay measurement mechanism.

For more information, see IEEE Std Clause 7.5.4.

Programmatic Use
Block Parameter: delay_measure

Slave only — Node that cannot be allocated as master PTP clock
off (default) | on

When you select this check box, you cannot allocate the PTP Ethernet card that this block
represents as a master PTP clock.

In Slave only mode, the values of the advanced parameters (Priority 1, Clock class,
Clock accuracy, and Priority 2) are set to their highest values. When the parameters
have these settings, all of the other nodes must have the same configuration. If a node has
a different configuration, the Best Master Clock Algorithm (BMCA) cannot allocate the
node as best master clock. If the BMCA selects a Slave only node as best clock, the node
remains in the LISTENING state.

Programmatic Use
Block Parameter: slave_only

Show advanced configuration parameters — Enable low-level PTP
configuration parameters
off (default) | on

For more information, see IEEE Std 1588-2008.

Selecting this check box makes advanced configuration parameters visible: Domain
number, Current UTC offset, Priority 1, Clock class, Clock accuracy, and Priority
2.

18 Precision Time Protocol Blocks

18-6

Programmatic Use
Block Parameter: enable_advanced_config

Domain number — Domain number of PTP network
0 (default) | 0–127

Specify the domain number of the PTP network to which the node belongs.

A Simulink Real-Time PTP node can belong to only one PTP domain at a given time. If the
node receives a PTP message with a different domain number, it ignores it. For more
information, see IEEE Std Clause 7.1.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: domain_num

Current UTC offset — Current offset from Coordinated Universal Time
35 (default) | integer

The current UTC offset, in seconds.

If you specify a nonzero value, that value is considered valid. The UTCOffsetValid flag
is set to true. Otherwise, the flag is set to false. For more information, see IEEE Std
1588-2008 Clause 7.2.3.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: utc_offset

Priority 1 — Priority of PTP node
128 (default) | 0–255

Specify an integer value encoding the priority of the PTP node in the network. When the
value is 0, the node has the highest priority. When it is 255, the node has the lowest
priority.

To assess the quality of two PTP clocks, the Best Master Clock Algorithm compares the
following parameters, in order:

 IEEE 1588 Real-Time UDP

18-7

1 Priority 1
2 Clock class
3 Clock accuracy
4 Priority 2

For each parameter, the algorithm selects the clock with the smaller value as the best
clock. If all four parameters are equal for both clocks, the algorithm compares the MAC
addresses of the nodes.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.2.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: priority1

Clock class — Clock class designator
248 (default) | 0–255

Specify a nonreserved integer value. If Clock class is less than 128, the node cannot
enter the SLAVE state. If Clock class is less than 128 and the node is not selected as the
best clock, the node enters the PASSIVE state.

If you specify a reserved integer value, the block produces an error during model update.
For more information, see IEEE Std 1588-2008 Clause 7.6.2.4. For a list of reserved and
nonreserved Clock class values, see IEEE Std 1588-2008 Table 5.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: clock_class

Clock accuracy — Accuracy code for clock
hex2dec('FE') (default) | 0–254

Specify a nonreserved integer value. For more information, see IEEE Std 1588-2008
Clause 7.6.2.5. For a list of reserved and nonreserved Clock accuracy values, see IEEE
Std 1588-2008 Table 6.

18 Precision Time Protocol Blocks

18-8

To make this parameter visible, select the Show advanced configuration parameters
check box.
Programmatic Use
Block Parameter: clock_accuracy

Priority 2 — Secondary priority of PTP node
128 (default) | 0–255

Specify secondary priority of PTP node. When the value is 0, the node has the highest
priority. When it is 255, the node has the lowest priority.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.3.

To make this parameter visible, select the Show advanced configuration parameters
check box.
Programmatic Use
Block Parameter: priority2

Time Intervals

Announce interval (second) — Period of master node Announce message
2 (default) | numeric

The period, in seconds, of an Announce message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.8.
Programmatic Use
Block Parameter: announce_interval

Sync interval (second) — Period of master node Sync message
0.1 (default) | numeric

The period, in seconds, of a Sync message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.9.
Programmatic Use
Block Parameter: sync_interval

Min delay or pdelay request interval (second) — Period of slave node
request message
0.1 (default) | numeric

 IEEE 1588 Real-Time UDP

18-9

Period of delay request message or of peer-delay request message transmitted by a node
in the slave state. When the delay measurement mechanism is Request-response, the
block transmits delay request messages. When the mechanism is Peer-delay, it
transmits peer-delay request messages.

For more information, see IEEE Std 1588-2008 Clauses 9.5.11 and 9.5.13.

Programmatic Use
Block Parameter: min_pdelay_req_interval

Announce receipt timeout (in announce intervals) — Timeout for
Announce message response
3 (default) | integer

Specifies the number of announce intervals a node not in the master state has to wait
without receiving an announce message. After the timeout passes, the node enters the
master state.

For more information, see IEEE Std 1588-2008 Clause 9.2.6.11.

Programmatic Use
Block Parameter: announce_receipt_timeout

See Also
SimulinkRealTime.target.getPCIInfo

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2015b

18 Precision Time Protocol Blocks

18-10

https://standards.ieee.org

IEEE 1588 Ethernet
Execute IEEE 1588 Precision Time Protocol
Library: Simulink Real-Time / IEEE 1588

Description
IEEE 1588 Ethernet executes the PTP protocol, using raw Ethernet to send and receive
the protocol messages. The block communicates with the corresponding blocks on the
other target computers, determines the time offset that synchronizes them, and adjusts
the time offset.

Parameters
General

Device ID — Ethernet board identifier
1-8

From the list, select a unique number to identify the Ethernet board.

Programmatic Use
Block Parameter: ID

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

 IEEE 1588 Ethernet

18-11

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

Programmatic Use
Block Parameter: PciFunction

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample_time

Network Parameters

Source MAC address — MAC address of Ethernet card for message source
EEPROM (default) | Specify

Source MAC address in Ethernet transport protocol. From the list, select:

• EEPROM — Allow the block to get the Ethernet card MAC address that is built into the
Ethernet card. Use this option if you use separate Ethernet connections to transmit
data and to synchronize PTP clocks.

• Specify — Explicitly specify the source MAC address. Use this option if both of these
conditions are true:

• You use the same Ethernet connection to transmit data as you use to synchronize
PTP clocks.

• You do not know the built-in MAC address of the Ethernet card.

Selecting Specify makes the Specify source MAC address parameter visible.

Programmatic Use
Block Parameter: AddressSource

18 Precision Time Protocol Blocks

18-12

Specify source MAC address — Explicit MAC address of Ethernet card for
message source
00:00:00:00:00:00 (default) | xx:xx:xx:xx:xx:xx

Enter the MAC address for the Ethernet card. Use the MAC address that is built into the
Ethernet card or an arbitrary MAC address that is unique within the PTP network. Do not
use one of the standard PTP multicast MAC addresses.

To make this parameter visible, set Source MAC address to Specify.

Programmatic Use
Block Parameter: MAC

Destination MAC address — MAC address of Ethernet card for message
destination
Standard PTP Multicast (01:1B:19:00:00:00, 01:80:C2:00:00:0E) (default)
| Specify

Destination MAC address in Ethernet transport protocol. Select one of:

• Standard PTP Multicast (01:1B:19:00:00:00, 01:80:C2:00:00:0E) —
Default multicast MAC address assigned to the PTP protocol. If you select this option,
the destination MAC addresses are:

• 01:1B:19:00:00:00 for non-peer-delay measurement mechanism messages
(Announce, Sync, Follow_up, Delay_Req, Delay_Resp)

• 01:80:C2:00:00:00:0E for peer-delay measurement mechanism messages
(Pdelay_Req, Pdelay_Resp, Pdelay_Resp_Follow_up)

• Specify — Explicitly specify the destination MAC address.

You do not have to specify a source MAC address. The block uses the unique MAC
address of the PTP Ethernet card.

Selecting Specify makes the Specify destination MAC address parameter visible.

Programmatic Use
Block Parameter: dest_mac

Specify destination MAC address — Explicit MAC address of Ethernet card for
message destination
00:00:00:00:00:00 (default) | xx:xx:xx:xx:xx:xx

 IEEE 1588 Ethernet

18-13

Specify a MAC address for the message destination. Use this option for Slave only nodes.
Specify the MAC address of the master node Ethernet card. The master node uses the
standard PTP multicast MAC address to transmit messages to all slave nodes.

To make this parameter visible, set Destination MAC address to Specify.
Programmatic Use
Block Parameter: mac_select

Clock Parameters

Timescale (epoch) — Origin point of the PTP timescale
PTP (1970-01-01) (default) | GPS (1980-06-01) | NTP (1900-01-01) | Specify

Specify the origin point of the PTP timescale. Select one of:

• PTP (1970-01-01) — Precision Time Protocol standard epoch, starting January 1,
1970.

• GPS (1980-06-01) — Global Positioning System standard epoch, starting June 1,
1980.

• NTP (1900-01-01) — Network Time Protocol standard epoch, starting January 1,
1900.

• Specify — Explicitly specify the timescale epoch.

Selecting Specify makes the Arbitrary timescale epoch (yyyy mm dd hh) parameter
visible.
Programmatic Use
Block Parameter: timescale

Arbitrary timescale epoch [yyyy mm dd hh] — Explicit origin point for PTP
timescale
[1970 01 01 00] (default) | [yyyy mm dd hh]

Specify the origin point for the PTP timescale, in year, month, day, and hour.

To make this parameter visible, set Timescale (epoch) to Specify.
Programmatic Use
Block Parameter: epoch

Delay measurement mechanism — Method of measuring link delays
Request-response (default) | Peer-delay

18 Precision Time Protocol Blocks

18-14

Specify the method of measuring link delays. Configure all PTP network nodes to use the
same link delay measurement mechanism.

For more information, see IEEE Std Clause 7.5.4.

Programmatic Use
Block Parameter: delay_measure

Slave only — Node that cannot be allocated as master PTP clock
off (default) | on

When you select this check box, you cannot allocate the PTP Ethernet card that this block
represents as a master PTP clock.

In Slave only mode, the values of the advanced parameters (Priority 1, Clock class,
Clock accuracy, and Priority 2) are set to their highest values. When the parameters
have these settings, all of the other nodes must have the same configuration. If a node has
a different configuration, the Best Master Clock Algorithm (BMCA) cannot allocate the
node as best master clock. If the BMCA selects a Slave only node as best clock, the node
remains in the LISTENING state.

Programmatic Use
Block Parameter: slave_only

Show advanced configuration parameters — Enable low-level PTP
configuration parameters
off (default) | on

For more information, see IEEE Std 1588-2008.

Selecting this check box makes advanced configuration parameters visible: Domain
number, Current UTC offset, Priority 1, Clock class, Clock accuracy, and Priority
2.

Programmatic Use
Block Parameter: enable_advanced_config

Domain number — Domain number of PTP network
0 (default) | 0–127

Specify the domain number of the PTP network to which the node belongs.

 IEEE 1588 Ethernet

18-15

A Simulink Real-Time PTP node can belong to only one PTP domain at a given time. If the
node receives a PTP message with a different domain number, it ignores it. For more
information, see IEEE Std Clause 7.1.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: domain_num

Current UTC offset — Current offset from Coordinated Universal Time
35 (default) | integer

The current UTC offset, in seconds.

If you specify a nonzero value, that value is considered valid. The UTCOffsetValid flag
is set to true. Otherwise, the flag is set to false. For more information, see IEEE Std
1588-2008 Clause 7.2.3.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: utc_offset

Priority 1 — Priority of PTP node
128 (default) | 0–255

Specify an integer value encoding the priority of the PTP node in the network. When the
value is 0, the node has the highest priority. When it is 255, the node has the lowest
priority.

To assess the quality of two PTP clocks, the Best Master Clock Algorithm compares the
following parameters, in order:

1 Priority 1
2 Clock class
3 Clock accuracy
4 Priority 2

18 Precision Time Protocol Blocks

18-16

For each parameter, the algorithm selects the clock with the smaller value as the best
clock. If all four parameters are equal for both clocks, the algorithm compares the MAC
addresses of the nodes.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.2.

To make this parameter visible, select the Show advanced configuration parameters
check box.
Programmatic Use
Block Parameter: priority1

Clock class — Clock class designator
248 (default) | 0–255

Specify a nonreserved integer value. If Clock class is less than 128, the node cannot
enter the SLAVE state. If Clock class is less than 128 and the node is not selected as the
best clock, the node enters the PASSIVE state.

If you specify a reserved integer value, the block produces an error during model update.
For more information, see IEEE Std 1588-2008 Clause 7.6.2.4. For a list of reserved and
nonreserved Clock class values, see IEEE Std 1588-2008 Table 5.

To make this parameter visible, select the Show advanced configuration parameters
check box.
Programmatic Use
Block Parameter: clock_class

Clock accuracy — Accuracy code for clock
hex2dec('FE') (default) | 0–254

Specify a nonreserved integer value. For more information, see IEEE Std 1588-2008
Clause 7.6.2.5. For a list of reserved and nonreserved Clock accuracy values, see IEEE
Std 1588-2008 Table 6.

To make this parameter visible, select the Show advanced configuration parameters
check box.
Programmatic Use
Block Parameter: clock_accuracy

Priority 2 — Secondary priority of PTP node
128 (default) | 0–255

 IEEE 1588 Ethernet

18-17

Specify secondary priority of PTP node. When the value is 0, the node has the highest
priority. When it is 255, the node has the lowest priority.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.3.

To make this parameter visible, select the Show advanced configuration parameters
check box.

Programmatic Use
Block Parameter: priority2

Time Intervals

Announce interval (second) — Period of master node Announce message
2 (default) | numeric

The period, in seconds, of an Announce message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.8.

Programmatic Use
Block Parameter: announce_interval

Sync interval (second) — Period of master node Sync message
0.1 (default) | numeric

The period, in seconds, of a Sync message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.9.

Programmatic Use
Block Parameter: sync_interval

Min delay or pdelay request interval (second) — Period of slave node
request message
0.1 (default) | numeric

Period of delay request message or of peer-delay request message transmitted by a node
in the slave state. When the delay measurement mechanism is Request-response, the
block transmits delay request messages. When the mechanism is Peer-delay, it
transmits peer-delay request messages.

For more information, see IEEE Std 1588-2008 Clauses 9.5.11 and 9.5.13.

18 Precision Time Protocol Blocks

18-18

Programmatic Use
Block Parameter: min_pdelay_req_interval

Announce receipt timeout (in announce intervals) — Timeout for
Announce message response
3 (default) | integer

Specifies the number of announce intervals a node not in the master state has to wait
without receiving an announce message. After the timeout passes, the node enters the
master state.

For more information, see IEEE Std 1588-2008 Clause 9.2.6.11.

Programmatic Use
Block Parameter: announce_receipt_timeout

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2015b

 IEEE 1588 Ethernet

18-19

https://standards.ieee.org

IEEE 1588 Read Parameter
Output Precision Time Protocol status parameter value
Library: Simulink Real-Time / IEEE 1588

Description
Read the parameter that you select and send its value to the block output. The block
output name changes based on the parameter that you select.

Ports

Output Arguments
Time — Time into epoch, in nanoseconds
double | [uint]

Current number of nanoseconds, counting from the beginning of the epoch.

When Parameter to read is:

• PTP time (nanosecond) — The output is a double.
• PTP time (nanosecond vector) — The output is a uint vector.

To compute the difference in nanoseconds between two vector time values, pass both
time values to the Time Stamp Delta block. To convert a single time value to
nanoseconds, pass one time value to a Time Stamp Delta block and ground the other
input.

Dependency

When Parameter to read is PTP time (nanosecond) or PTP time (nanosecond
vector), output Time is visible.

18 Precision Time Protocol Blocks

18-20

When you select the Time at block start check box, the value is measured at the
beginning of block execution. When you clear the Time at block start check box, the
value is measured at the end of block execution.

Date — Current date and time
[year, month, day of week, day of month, hour, minute, second, millisecond]

Current time in time-of-day format. The value is a vector of size 8, data type uint16,
containing: year, month (1–12), day of week (0–6), day of month (0–31), hour (0–23),
minute (0–59), second (0–59), and millisecond (0–999).

Dependency

When Parameter to read is PTP time (time-of-day), output Date is visible.

Offset — Offset from master PTP clock, in nanoseconds
double

Last computed offset from master PTP clock node, in nanoseconds.

Dependency

When Parameter to read is Offset from Master, output Offset is visible.

Pdelay — Mean path delay, in nanoseconds
double

Last computed mean path delay, in nanoseconds.

Dependency

When Parameter to read is Path delay, output PDelay is visible.

State — Current state of protocol
1-9

Current state of the protocol state machine. Returns one of:

• 1 = INITIALIZING — Initializing data set and communication protocol
• 2 = FAULTY — Occurrence of serious fault
• 3 = DISABLED — Management message disables the node
• 4 = LISTENING — Waiting for announce receipt timeout period to expire

 IEEE 1588 Read Parameter

18-21

• 5 = PRE_MASTER — Intermediate state before moving to MASTER state after
execution of Best Master Clock Algorithm (BMCA)

• 6 = MASTER — Node is the master PTP clock node
• 7 = PASSIVE — BCMA designates node as passive
• 8 = UNCALIBRATED — Intermediate state before moving to SLAVE state after

execution of BMCA
• 9 = SLAVE — Node is a slave node

For more information, see IEEE Std 1588-2008 Clause 9.2.5.

Dependency

When Parameter to read is Protocol state, output State is visible.

Parameters
Parameter to read — Parameter to display at output
PTP time (nanosecond) (default) | PTP time (nanosecond vector) | PTP time
(time-of-day) | Offset from Master | Path delay | Protocol state

Specify parameter to read and make corresponding output port visible. Select one of:

• PTP time (nanosecond) — Reveals port Time and parameter Time at block start
• PTP time (nanosecond vector) — Reveals port Time and parameter Time at

block start
• PTP time (time-of-day) — Reveals port Date
• Offset from Master — Reveals port Offset
• Path delay — Reveals port PDelay
• Protocol state — Reveals port State

Programmatic Use
Block Parameter: param

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

18 Precision Time Protocol Blocks

18-22

Programmatic Use
Block Parameter: sample_time

Time at block start — Place of time value in execution
0 (default) | 1

When you select this check box, the Time output contains the time at the beginning of
block execution. When you clear this check box (the default), the Time output contains
the time at the end of block execution.

Setting Parameter to read to PTP time (nanosecond) makes this check box visible.

Programmatic Use
Block Parameter: enable_read_precision

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

Introduced in R2015b

 IEEE 1588 Read Parameter

18-23

IEEE 1588 Sync Execution
Synchronize model execution to Precision Time Protocol clock
Library: Simulink Real-Time / IEEE 1588

Description
When the PTP time is a multiple of the fundamental step size of the model, this block
causes a real-time interrupt.

Make measurements across multiple target computers at the same time step by using the
IEEE 1588 Sync Execution block. The block uses a control loop to adjust the step size
toward the synchronization objective. During this process, the control loop decreases or
increases the step size. When the control loop decreases the step size, the CPU can
become overloaded. You can decrease the maximum adjustment value by decreasing the
Proportional gain parameter. The upper bound of the adjustment value is 10% of the
model fundamental sample time, regardless of the Proportional gain value.

Use this block in every model that requires synchronized execution, whether it is a PTP
master or slave model. To use this block, in the Simulink Real-Time options, set the real-
time interrupt source to Timer. As a best practice, for all models, use the same
fundamental sample time. Set the sample time in this block to that fundamental sample
time.

If you use the IEEE 1588 Sync Execution block in your model, configuring EtherCAT
distributed clocks in master shift mode in the same model produces a build error. To
include IEEE 1588 synchronized execution and EtherCAT distributed clocks in the same
model, use EtherCAT bus shift mode.

18 Precision Time Protocol Blocks

18-24

Ports

Output
Time — PTP time of real-time interrupt
scalar

PTP time value at which the interrupt occurs, in seconds.
Data Types: double

Delta — Difference between interrupt time and nearest PTP sample time
scalar

Current difference, in seconds, between the PTP time at the interrupt and the nearest
PTP time that is a multiple of the fundamental sample time.
Data Types: double

Parameters
Proportional gain — Proportional gain of the kernel clock adjustment
controller
0.1 (default) | double

The current value of output port Delta is multiplied by the proportional gain to get the
first part of the controller output.

Programmatic Use
Block Parameter: Gain

Low pass filter pole — Pole of the low-pass filter of the kernel clock
adjustment controller
0.7 (default) | double

The low-pass filter is a discrete-time, first-order transfer function. The low-pass filter
tracks the rate difference between the kernel and PTP clocks and provides the second
part of the controller output.

 IEEE 1588 Sync Execution

18-25

Programmatic Use
Block Parameter: PoleZ

PTP clock synchronization threshold (seconds) — Threshold value at which
the controller begins to adjust the kernel clock
1e-3 (default) | double

The effect of this value depends on the PTP node state:

• Slave node — The controller starts the kernel adjustment when the slave PTP clock
offset from the master clock is less than or equal to this parameter.

• Master node — The controller starts the kernel clock adjustment immediately after it
enters the master state, regardless of the value of this parameter.

It is a best practice to start adjusting the kernel clock only when the PTP clock is stable.
Keep this value less than or equal to a millisecond.

Programmatic Use
Block Parameter: offset_threshold

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample_time

See Also
Transfer Fcn First Order

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2016a

18 Precision Time Protocol Blocks

18-26

https://standards.ieee.org

IEEE 1588 Sync Status
Output synchronization status of Precision Time Protocol
Library: Simulink Real-Time / IEEE 1588

Description
When the absolute value of the offset from the master PTP clock is less than or equal to
the threshold, the output port value is true. If the node is selected as the master clock,
the output port value becomes true when it enters the MASTER state.

Ports

Output Arguments
S — Detects if block is synchronized with master PTP clock
true | false

When the absolute value of the offset from the master PTP clock is less than or equal to
the specified threshold, returns true.

Parameters
Offset threshold (second) — Synchronization threshold value
10e-6 (default) | double

Threshold value, in seconds, from which the node is considered well synchronized to the
master PTP clock node. The default value is 10 μs. The minimum allowed value is 1 μs.

Programmatic Use
Block Parameter: offset_threshold

 IEEE 1588 Sync Status

18-27

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample_time

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2015b

18 Precision Time Protocol Blocks

18-28

https://standards.ieee.org

IEEE 1588 Setup
Configure node for Precision Time Protocol execution

Library
Simulink Real-Time Library for Precision Time Protocol

Description
Sets up the Precision Time Protocol for the specified transport protocol (Ethernet or
UDP). Exposes as outputs the state of the protocol, the delay measurement mechanism,
and triggers for sending messages.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

 IEEE 1588 Setup

18-29

Block Outputs
Name Description
State Current state of the protocol state machine.

Returns one of:

• 1 = INITIALIZING — Initializing data
set and communication protocol

• 2 = FAULTY — Occurrence of serious
fault

• 3 = DISABLED — Management message
disables the node

• 4 = LISTENING — Waiting for announce
receipt timeout period to expire

• 5 = PRE_MASTER — Intermediate state
before moving to MASTER state after
execution of Best Master Clock
Algorithm (BMCA)

• 6 = MASTER — Node is the master PTP
clock node

• 7 = PASSIVE — BCMA designates node
as passive

• 8 = UNCALIBRATED — Intermediate
state before moving to SLAVE state after
execution of BMCA

• 9 = SLAVE — Node is a slave node

For more information, see IEEE Std
1588-2008 Clause 9.2.5.

DM Value of Delay measurement
mechanism. Returns one of:

• 1 = Request-response
• 2 = Peer-delay

ST Value of synchronization trigger, true
every Sync interval

18 Precision Time Protocol Blocks

18-30

Name Description
AT Value of announce trigger, true every

Announce interval
DT Value of delay request trigger, true every

Min delay or pdelay request interval

Block Parameters

General
Device ID

From the list, select a unique number to identify the Ethernet board. Select the same
Device ID as the one that you selected for the protocol configuration block.

Transport protocol
The network protocol for communicating messages. Select one of Real-Time UDP
and Raw Ethernet.

IP address
IP address of Ethernet card, or node, represented by the PTP Setup block.

Board time increment value
Value that changes the PTP clock.

PCI bus
Enter the PCI bus number for the Ethernet card.

PCI slot
Enter the PCI slot number for the Ethernet card.

Time Properties
Time source

Source of PTP clock signal. Select one of:

• Precise System Time — Synchronization of system time without hardware
timestamp

 IEEE 1588 Setup

18-31

• Tick Counter — Synchronization of tick counter read without hardware
timestamp

• Ethernet board — Clock on PTP Ethernet board

Timescale (epoch)
Specify origin point of the PTP timescale. Select one of:

• PTP (1970-01-01 — Precision Time Protocol standard epoch, starting January 1,
1970.

• GPS (1980-06-01) — Global Positioning System standard epoch, starting June 1,
1980.

• NTP (1900-01-01) — Network Time Protocol standard epoch, starting January
1, 1900.

• Specify — Selecting this value makes the Arbitrary timescale epoch (yyyy mm
dd hh) parameter visible.

Arbitrary timescale epoch (yyyy mm dd hh)
Specify origin point for PTP timescale, in year, month, day, and hour.

When Timescale (epoch) is Specify, Arbitrary timescale epoch (yyyy mm dd
hh) is visible.

Delay measurement mechanism
Method of measuring link delays. Select one of Request-response and Peer-
delay.

In a PTP network, you must configure all nodes to use the same link delay
measurement mechanism.

For more information, see IEEE Std 1588-2008 Clause 7.5.4.
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.
Slave only

When you select this check box, you cannot allocate the PTP Ethernet card that this
block represents as a master PTP clock.

In Slave only mode, the values of the advanced parameters (Priority 1, Clock class,
Clock accuracy, and Priority 2) are set to their highest values. When the
parameters have these settings, the Best Master Clock Algorithm (BMCA) cannot

18 Precision Time Protocol Blocks

18-32

choose the node as best master clock unless all of the other nodes have the same
configuration. If the BMCA selects a Slave only node as best clock, the node remains
in the LISTENING state.

Time Intervals
Announce interval (second)

The period, in seconds, of an Announce message transmitted by a node in master
state.

For more information, see IEEE Std 1588-2008 Clause 9.5.8.
Sync interval (second)

The period, in seconds, of a Sync message transmitted by a node in master state.

For more information, see IEEE Std 1588-2008 Clause 9.5.9.
Min delay or pdelay request interval (second)

Period of delay request message or of peer-delay request message transmitted by a
node in the slave state. When the delay measurement mechanism is Request-
response, the block transmits delay request messages. When the mechanism is
Peer-delay, it transmits peer-delay request messages.

For more information, see IEEE Std 1588-2008 Clauses 9.5.11 and 9.5.13.
Announce receipt timeout (in announce intervals)

Specifies the number of announce intervals a node not in the master state has to wait
without receiving an announce message before the node enters the master state.

For more information, see IEEE Std 1588-2008 Clause 9.2.6.11.

Advanced
Domain number

Specify the domain number of the PTP network to which the node belongs.

A Simulink Real-Time PTP node can belong to only one PTP domain at a given time. If
the node receives a PTP message with a different domain number, it ignores it. For
more information, see IEEE Std 1588-2008 Clause 7.1.

 IEEE 1588 Setup

18-33

When you select the Show advanced configuration parameters check box,
Domain number is visible.

Current UTC offset
The current UTC offset, in seconds.

If you specify a nonzero value, that value is considered valid. The UTCOffsetValid
flag is set to true. Otherwise, the flag is set to false. For more information, see
IEEE Std 1588-2008 Clause 7.2.3.

When you select the Show advanced configuration parameters check box,
Current UTC offset is visible.

Priority 1
Specify an integer value in the range 0–255. When the value is 0, the node has the
highest priority. When it is 255, the node has the lowest priority.

To assess the quality of two PTP clocks, the Best Master Clock Algorithm compares
the following parameters, in order:

1 Priority 1
2 Clock class
3 Clock accuracy
4 Priority 2

If a parameter for one PTP clock has a smaller value than that parameter for the other
clock, the algorithm selects the clock with the smaller value as the best clock. If all
four parameters are equal for both clocks, the algorithm compares the MAC
addresses of the nodes.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.2.

When you select the Show advanced configuration parameters check box,
Priority 1 is visible.

Clock class
Specify a nonreserved integer value in the range 0–255. If Clock class is less than
128, the node cannot enter the SLAVE state. If Clock class is less than 128 and the
node is not selected as the best clock, the node enters the PASSIVE state.

18 Precision Time Protocol Blocks

18-34

If you specify a reserved integer value, the block produces an error during model
update. For more information, see IEEE Std 1588-2008 Clause 7.6.2.4. For a list of
reserved and nonreserved Clock class values, see IEEE Std 1588-2008 Table 5.

When you select the Show advanced configuration parameters check box, Clock
class is visible.

Clock accuracy
Specify a nonreserved integer value in the range 0–254.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.5. For a list of reserved
and nonreserved Clock accuracy values, see IEEE Std 1588-2008 Table 6.

When you select the Show advanced configuration parameters check box, Clock
accuracy is visible.

Priority 2
Specify an integer value in the range 0–255. When the value is 0, the node has the
highest priority. When it is 255, the node has the lowest priority.

For more information, see IEEE Std 1588-2008 Clause 7.6.2.3.

When you select the Show advanced configuration parameters check box,
Priority 2 is visible.

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2015b

 IEEE 1588 Setup

18-35

https://standards.ieee.org

IEEE 1588 Adjust Time
Run Precision Time Protocol clock correction servo

Library
Simulink Real-Time Library for Precision Time Protocol

Description
When Trigger is true, IEEE 1588 Adjust Time performs time offset correction at every
sample time until the offset drops below a threshold value. It then switches to rate
correction. During rate correction, the block adjusts the time increment value of the
Ethernet card to track the master PTP clock rate.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

Block Inputs
Name Description
Trigger While Trigger is true, the block runs the

time adjustment algorithm at every time
step.

Block Parameters
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.

18 Precision Time Protocol Blocks

18-36

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2015b

 IEEE 1588 Adjust Time

18-37

https://standards.ieee.org

IEEE 1588 Create Message
Pack a Precision Time Protocol message for transmission

Library
Simulink Real-Time Library for Precision Time Protocol

Description
Creates and packs an IEEE 1588 message of a type specified by parameter Message
type. Sends the message and the message length to the Data and Length outputs,
respectively.

By default, IEEE 1588 Create Message creates a message at every sample time. If you
select the Enable trigger port check box, IEEE 1588 Create Message creates a message
at every sample time only when the trigger is true.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

Block Inputs and Outputs
Inputs

Name Description
Trigger While Trigger is true, the block creates a

message at every sample time.

When Enable trigger port is true, this
input is visible.

18 Precision Time Protocol Blocks

18-38

Outputs

Name Description
Data Message data in a uint8 array.
Length Message data length (double).

Block Parameters
Message type

Select the PTP message type to pack. Select one of Sync, Delay_Req, Pdelay_Req,
Pdelay_Resp, Follow_up, Delay_Resp, Pdelay_Resp_Follow_up, and
Announce.

For more information, see IEEE Std 1588-2008 Clause 7.3.3.
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.
Enable trigger port

Selecting this check box makes input port Trigger visible.

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2015b

 IEEE 1588 Create Message

18-39

https://standards.ieee.org

IEEE 1588 Process Message
Process a received Precision Time Protocol message

Library
Simulink Real-Time Library for Precision Time Protocol

Description
Unpack a received PTP message and execute the actions that the message data requires.
For example, get timestamps and calculate offset.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

Block Inputs and Outputs
Inputs

Name Description
Data Message data in a uint8 array.
Length Message data length (double).

18 Precision Time Protocol Blocks

18-40

Outputs

Name Description
Flag If true, the two-steps flag bit in the

message is set, otherwise, the bit is
cleared.

Type Message type (uint8). Return one of:

• 0 = Sync
• 1 = Delay_Req
• 2 = Pdelay_Req
• 3 = Pdelay_Resp
• 8 = Follow_up
• 9 = Delay_Resp
• 10 = Pdelay_Resp_Follow_up
• 11 = Announce

For more information, see IEEE Std
1588-2008 Clause 7.3.3.

Block Parameters
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

 IEEE 1588 Process Message

18-41

https://standards.ieee.org

Introduced in R2015b

18 Precision Time Protocol Blocks

18-42

IEEE 1588 Sync Error
Output block execution step size and offset delta of real-time interrupt

Library
Simulink Real-Time Library for Precision Time Protocol

Description
The block returns the block execution step size as measured by the PTP clock. It also
returns the following information:

• The PTP time when the real-time interrupt triggers.
• The difference between the PTP time at the real-time interrupt and the nearest PTP

time that is a multiple of the fundamental sample time.

To use this block, in the Simulink Real-Time options, set the real-time interrupt source to
Timer.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

Block Outputs
Name Description
Time PTP time value when the real-time interrupt

occurs, in seconds
Step Actual block execution step size, in

seconds, as calculated from PTP clock
measurements

 IEEE 1588 Sync Error

18-43

Name Description
Delta Current difference, in seconds, between the

PTP time at the interrupt and the nearest
PTP time that is a multiple of the
fundamental sample time

Block Parameters
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2016a

18 Precision Time Protocol Blocks

18-44

https://standards.ieee.org

Adjust Step Size
Adjust block step size during execution

Library
Simulink Real-Time Library for Precision Time Protocol

Description
The block sets the execution step size of the block. The block execution step size is equal
to the fundamental sample time plus the value of Adj, scaled to the block sample time.
For example, if the block sample time is twice the fundamental sample time, each
fundamental execution step gets half of the Adj value.

When the block changes the execution step size, the new value remains active until the
block changes the value again.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

Block Inputs
Name Description
Adj Step size increment

Block Parameters
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.

 Adjust Step Size

18-45

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2016a

18 Precision Time Protocol Blocks

18-46

https://standards.ieee.org

Current Step Size
Output current block execution step size

Library
Simulink Real-Time Library for Precision Time Protocol

Description
The block returns the current block execution step size. When you select Enable base
rate output port, output port BR shows the base rate or model fundamental step size.

The PTP internal block descriptions are for informational purposes only. You cannot use
these blocks by themselves in a model. The subsystem mask controls the block
parameters. Do not edit the parameters directly.

Block Outputs
Name Description
CS Current block execution step size, in

seconds
BR Base rate, or model fundamental step size,

in seconds

When you select Enable base rate output
port, this port becomes visible.

Block Parameters
Sample time (-1 for inherited)

Enter the base sample time or a multiple of the base sample time.

 Current Step Size

18-47

Enable base rate output port
To make the BR output visible, select this check box.

See Also

Topics
“Troubleshoot Precision Time Protocol Configuration” on page 17-27

External Websites
standards.ieee.org

Introduced in R2016a

18 Precision Time Protocol Blocks

18-48

https://standards.ieee.org

Real-Time UDP Configuration
Configure network interface for real-time UDP communication
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

Description
The Real-Time UDP Configuration block configures the network for real-time UDP
operation.

IP fragmentation is not supported in Simulink Real-Time PTP UDP blocks. The packet
payload is limited to 1472 bytes (1500 bytes UDP packet size − 28 bytes combined packet
header size).

Parameters
Device ID — Identify this Ethernet board
1 (default) | 1−8

From the list, select a unique integer to identify the Ethernet board. Use this ID to
associate the other UDP blocks with this board.
Programmatic Use
Block Parameter: ID

IP Address — IP address for interface
x.x.x.x

The addresses 0.0.0.0 and 255.255.255.255 are invalid local IP addresses.
Programmatic Use
Block Parameter: IpAddress

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

 Real-Time UDP Configuration

18-49

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: Gateway

Ethernet Driver — Driver for each chip family
Intel 8255X (default) | Intel Gigabit

Identifies the driver for each chip family that the block supports.

Programmatic Use
Block Parameter: EthDrv

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PciBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

18 Precision Time Protocol Blocks

18-50

Programmatic Use
Block Parameter: PciFunction

See Also
Receive | Send

Topics
“Target to Target Transmission using UDP”

External Websites
www.iso.org

Introduced in R2014b

 Real-Time UDP Configuration

18-51

https://www.iso.org

Receive
Receive data over UDP network on a dedicated network interface
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

Description
The Receive block receives UDP data on the specified local (destination) port. To receive
all data sent to this port, set Source IP address to 0.0.0.0, otherwise set Source IP
address to a valid IP address.

The default block behavior is to keep the previous output when there is no new data.

IP fragmentation is not supported in Simulink Real-Time PTP UDP blocks. The packet
payload is limited to 1472 bytes (1500 bytes UDP packet size − 28 bytes combined packet
header size).

Ports

Output Arguments
Data — Data received
[uint8]

Vector of uint8 containing data received.

N — Number of bytes received
0−1472

Number of new bytes received, and otherwise 0.

18 Precision Time Protocol Blocks

18-52

Parameters
Device ID — Device ID for Ethernet board
1 (default) | 1−8

From the list, select a unique number to identify the Ethernet board. Select the same
Device ID as the one you selected for the Real-Time UDP Configuration block.

Programmatic Use
Block Parameter: ID

Source IP address — IP address from which device accepts packets
0.0.0.0 (default) | x.x.x.x

Enter a valid IP address as a dotted decimal character vector, for example, 10.10.10.3.
You can also use a MATLAB expression that returns a valid IP address as a character
vector. With Local (destination) port, this parameter defines the source address.

The default address, 0.0.0.0, causes the block to accept UDP packets from any
accessible computer. If Source IP address is set to a specific IP address, packets
arriving from only that IP address are received.

The address 255.255.255.255 is an invalid IP address.

Programmatic Use
Block Parameter: Receive1

Local (destination) port — Port from which device accepts packets
1–65535

Specify the port of the target computer or device from which to receive the UDP packets.
With Source IP address, this parameter defines the source address.

Programmatic Use
Block Parameter: Receive2

Output port width — Width of output vector, in bytes
1–65504

Determines the width of the Data output vector. If this value is less than the number of
bytes in the received packet, the excess bytes are discarded.

 Receive

18-53

Programmatic Use
Block Parameter: Receive3

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: Receive4

See Also
Real-Time UDP Configuration | Send

External Websites
www.iso.org

Introduced in R2011a

18 Precision Time Protocol Blocks

18-54

https://www.iso.org

Send
Send data over UDP network on a dedicated network interface
Library: Simulink Real-Time / IEEE 1588 / PTP UDP

Description
The Send block sends UDP packets from Local (source) port to Destination port. To
broadcast to all devices, set Destination IP address to 255.255.255.255, otherwise
set Destination IP address to a valid IP address.

IP fragmentation is not supported in Simulink Real-Time PTP UDP blocks. The packet
payload is limited to 1472 bytes (1500 bytes UDP packet size − 28 bytes combined packet
header size).

Ports

Input
Data — Data to transmit
[uint8]

Vector of uint8 containing data to send.

N — Number of bytes to transmit
0−1472

Number of bytes to send.

 Send

18-55

Parameters
Device ID — Device ID for Ethernet board
1 (default) | 1−8

From the list, select a unique number to identify the Ethernet board. Select the same
Device ID as the one you selected for the Real-Time UDP Configuration block.

Programmatic Use
Block Parameter: ID

Destination IP address — IP address to which device sends packets
255.255.255.255 (default) | x.x.x.x

Specify the IP address of the target computer or other device to which you want to send
the UDP packets. To broadcast the packets to all listening computers or devices, enter
255.255.255.255. With Destination port, this parameter defines the destination
address.

Programmatic Use
Block Parameter: Send1

Destination port — Port to which device sends packets
1–65535

Specify the target computer port to which you want to send the UDP packets. With
Destination IP address, this parameter defines the destination address.

Programmatic Use
Block Parameter: Send2

Local (source) port — Target computer port that sends packets
−1 (default) | 1–65535

Specify the target computer port from which you want to send the UDP packets.

Enter -1 to automatically assign a port for the target computer.

Programmatic Use
Block Parameter: Send3

Sample time — Sample time of block
-1 (default) | numeric

18 Precision Time Protocol Blocks

18-56

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: Send4

See Also
Real-Time UDP Configuration | Receive

External Websites
www.iso.org

Introduced in R2011a

 Send

18-57

https://www.iso.org

UDP Consume
Consume a UDP packet

Library
Simulink Real-Time Library for PTP UDP

Description
The UDP Consume block outputs a network buffer with raw data that you can output to a
Network Buffer library block. To create this output, the block:

1 Receives as input a network buffer that contains a UDP header.
2 Removes the UDP header.
3 Outputs the updated network buffer.

The block has two output ports:

• Buffers

Chain of network buffers.
• Chain size

Number of buffers on the chain.

18 Precision Time Protocol Blocks

18-58

Block Parameters
IP Group

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the
Real-Time UDP Configuration subsystem that is associated with this block.

Output port width
Enter the width of the port. A value other than 0 creates the following output ports:

• Source IP Address
• Destination IP Address
• Local UDP Port
• Remote UDP Port

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

External Websites
www.iso.org

Introduced in R2011a

 UDP Consume

18-59

https://www.iso.org

UDP Produce
Produce UDP packet by adding a UDP header to the input data

Library
Simulink Real-Time Library for PTP UDP

Description
The UDP Produce block receives a network buffer and adds a header to that buffer. It
then outputs that updated buffer.

Block Parameters
IP Group

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the
Real-Time UDP Configuration subsystem that is associated with this block.

IP address to send to (255.255.255.255 for broadcast)
Specify IP address of the target computer to which to send the UDP packets. To
broadcast the packets to all listening computers or devices, enter 255.255.255.255.
With Remote IP port to send to, this parameter defines the destination address.

Remote IP port to send to
Specify the target computer port to which to send the UDP packets. With IP address
to send to (255.255.255.255 for broadcast), this parameter defines the
destination address.

Use the following local IP port (-1 for automatic assignment)
Specify the target computer port from which to send the UDP packets.

18 Precision Time Protocol Blocks

18-60

Enter -1 to automatically assign a port for the target computer.
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

External Websites
www.iso.org

Introduced in R2011a

 UDP Produce

18-61

https://www.iso.org

UDP Rx
Receive UDP packet

Library
Simulink Real-Time Library for PTP UDP

Description
The UDP Rx block outputs a network buffer with a UDP header.

Block Parameters
IP Group

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the
Real-Time UDP Configuration subsystem that is associated with this block.

IP address to receive from (0.0.0.0 for accepting all)
Enter a valid IP address as a dotted decimal character vector. For example,
10.10.10.3. You can also use a MATLAB expression that returns a valid IP address
as a character vector. With IP port to receive from, this parameter defines the
source address.

The default address, 0.0.0.0, enables the acceptance of all UDP packets from any
accessible computer. If set to a specific IP address, only packets arriving from that IP
address are received.

18 Precision Time Protocol Blocks

18-62

IP port to receive from
Specify the port of the target computer or device from which to receive the video
frames. With IP address to receive from (0.0.0.0 for accepting all), this
parameter defines the source address.

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

External Websites
www.iso.org

Introduced in R2011a

 UDP Rx

18-63

https://www.iso.org

UDP Tx
Transmit UDP packet

Library
Simulink Real-Time Library for PTP UDP

Description
The UDP Tx block receives a network buffer with a UDP header and sends it.

Block Parameters
IP Group

Enter a number in the range 0 to 7. This value identifies the IP Init block inside the
Real-Time UDP Configuration subsystem that is associated with this block.

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also

External Websites
www.iso.org

18 Precision Time Protocol Blocks

18-64

https://www.iso.org

Introduced in R2011a

 UDP Tx

18-65

SAE J1939

19

SAE J1939 Blocks
The Simulink Real-Time J1939 blocks enable you to send and receive messages over a
FIFO-mode CAN network using the SAE J1939 message protocol. See “CAN”.

Before you start, provide a J1939 database in .dbc format.

See Also

More About
• “CAN”

19 SAE J1939

19-2

SAE J1939 Blocks

20

J1939 Network Configuration
Define J1939 network configuration name and database file

Library
Vehicle Network Toolbox: J1939 Communication

Description
The J1939 Network Configuration block is where you define a configuration name and
specify the associated user-supplied J1939 database. You can include more than one block
per model, each corresponding to a unique configuration on the CAN bus.

Note You need a license for both Vehicle Network Toolbox™ and Simulink software to use
this block.

Other Supported Features
The J1939 communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

20 SAE J1939 Blocks

20-2

Parameters
Configuration name

Define a name for this J1939 network configuration. The default is ConfigX, where
the number X automatically increases from 1 based on the number of existing blocks.

Database File
Specify the J1939 database file name relative to the current folder. For example, enter
J1939.dbc if the file is in the current folder; otherwise enter the full path with the
file name, such as C:\work\J1939.dbc.

The database file defines the J1939 parameter groups and nodes, and must be in
the .dbc format defined by Vector Informatik GmbH.

See Also
Blocks
J1939 Node Configuration | J1939 Receive | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

 J1939 Network Configuration

20-3

J1939 Node Configuration
Configure J1939 node with address and network management attributes

Library
Vehicle Network Toolbox: J1939 Communication

Description
The J1939 Node Configuration block is where you define a node and associate it with a
specific network configuration. Its Message information is read from the database for that
configuration, unless you are creating and configuring a custom node.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use
this block.

Other Supported Features
The J1939 communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

20 SAE J1939 Blocks

20-4

Block Outputs
Address (optional)

This output port exists when you check Output current node address in the dialog
box. It returns the effective address of the node.

AC Status (optional)
This output port exists when you check Output address claim status in the dialog
box. It indicates the success (1) or failure (0) of the node’s address claim.

Parameters
Config name

The ID of the J1939 network configuration to associate this node with. This is used to
access the corresponding J1939 database.

Node name
The name of this J1939 node. The available list shows none if no J1939 network
configuration is found or no node is defined in the associated database. If you are
creating a custom node, the node name must be unique within its J1939 network
configuration.

Message
These are the nine network attributes as defined by the database file consistent with
the J1939 protocol. These parameters are read-only unless you are defining a custom
node.

• Allow arbitrary address — Allow/disallow the node to switch to an arbitrary
address if the station address is not available. If this option is off and the node
loses its address claim, the node goes silent.

Node Address — Station address, decimal, 8-bit.
• Industry Group — Decimal, 3-bit.
• Vehicle System — Decimal, 7-bit.
• Vehicle System Instance — Identifies one particular occurrence of a given

vehicle system in a given network. If only one instance of a certain vehicle system
exists in a network, then this field must be set to 0 to define it as the first instance.
Decimal, 4-bit.

 J1939 Node Configuration

20-5

• Function ID — Decimal, 8-bit.
• Function Instance — Identifies the particular occurrence of a given function in a

vehicle system and given network. If only one instance of a certain function exists
in a network, then this field must be set to 0 to define it as the first instance.
Decimal, 5-bit.

• ECU Instance — This 3-bit field is used when multiple electronic control units
(ECU) are involved in performing a single function. If only one ECU is used for a
particular controller application (CA), then this field must be set to 0 to define it as
the first instance.

• Manufacturer Code — Decimal, 11-bit.
• Identity Number — Decimal, 21-bit.

Sample time
Simulation refresh rate. Specify the sampling time of the block during simulation.
This value defines the frequency at which the J1939 Node Configuration updates its
optional output ports. If the block is inside a triggered subsystem or inherits a sample
time, specify a value of -1. You can also specify a MATLAB variable for sample time.
The default value is 0.01 seconds. For information about simulation sample timing,
see “What Is Sample Time?” (Simulink)

Output current node address
Enable or disable the Address output port to show the effective address. The effective
address is different from the predefined station address if Allow arbitrary address is
selected, a name conflict occurs, and the current node has lower priority. The output
signal is a double value from 0 to 253. This port is disabled by default.

Output address claim status
Enable or disable the address claim AC Status output port to show the success of an
address claim. The output value is binary, 1 for success or 0 for failure. This port is
disabled by default.

See Also
Blocks
J1939 Network Configuration | J1939 Receive | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

20 SAE J1939 Blocks

20-6

Introduced in R2015b

 J1939 Node Configuration

20-7

J1939 CAN Transport Layer
Transport J1939 messages via CAN

Library
Vehicle Network Toolbox: J1939 Communication

Description
The J1939 CAN Transport Layer block allows J1939 communication via a CAN bus. This
block associates a user-defined J1939 network configuration with a connected CAN
device. Use one block for each J1939 Network Configuration block in your model.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use
this block.

Other Supported Features
The J1939 communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

20 SAE J1939 Blocks

20-8

Parameters
Config name

The name of the J1939 Network Configuration block to associate with.
Device

The CAN device, chosen from all connected CAN devices.
Bus speed

Speed of the CAN bus. The J1939 protocol specifies two rates of 250k and 500k. The
default is 250000.

Sample time
Simulation refresh rate. Specify the sampling time of the block during simulation.
This value defines the frequency at which the J1939 CAN Transport Layer block runs
during simulation. For information about simulation sample timing, see “What Is
Sample Time?” (Simulink) If the block is inside a triggered subsystem or inherits a
sample time, specify a value of -1. You can also specify a MATLAB variable for sample
time. The default value is 0.01 seconds.

See Also
Blocks
J1939 Node Configuration | J1939 Receive | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

 J1939 CAN Transport Layer

20-9

J1939 Receive
Receive J1939 parameter group messages

Library
Vehicle Network Toolbox: J1939 Communication

Description
The J1939 Receive block receives a J1939 message from the configured CAN device. The
J1939 database file defines the nodes and parameter groups. You specify the J1939
database with the J1939 Network Configuration block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use
this block.

Other Supported Features
The J1939 communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

20 SAE J1939 Blocks

20-10

Block Outputs
Data

Depending on the J1939 parameter group defined in the J1939 database file, the block
can have multiple data output signal ports. The block output data type is double.

Msg Status
When Output New Message Received status is checked in the dialog box, this port
outputs 1 when a new message is received from the CAN bus; otherwise, outputs 0.

Parameters
Config name

The name of the J1939 network configuration to associate with. This is used to access
the corresponding J1939 database. Only the nodes defined in the model and
associated with the specified J1939 network configuration appear in the Node name
list. The option shows none if no J1939 network configuration is found.

Node name
The name of the J1939 node. The drop-down list includes all the nodes in the model,
both custom nodes and nodes from the database.

Parameter Group
The parameter group number (PGN) and name from the database. The contents of
this list vary depending on the parameter groups that the J1939 database file
specifies. The default is the first parameter group for the selected node.

Note If you change any parameter group settings within your J1939 database file,
you must then open the J1939 Receive block dialog box and select the same
Parameter Group, then click OK or Apply to update the parameter group
information in the block.

Signals
Signals defined in the parameter group. The Min and Max settings are read from the
database, but by default the block does not clip signal values that exceed this range.

Source Address Filter
Filter messages based on source address:

 J1939 Receive

20-11

• Allow only — Lets you specify a single source address of interest.
• Allow all — Accepts messages from any source address. This is the default.

Destination Address Filter
Filter out message based on destination address:

• global only — Receive only broadcast messages.
• node specific only — Receive only messages addressed to this node.
• global and specific — Receive all broadcast and node-addressed messages.

This is the default.

Sample time
Simulation refresh rate. Specify the sampling time of the block during simulation.
This value defines the frequency at which the J1939 Receive updates its output ports.
If the block is inside a triggered subsystem or inherits a sample time, specify a value
of -1. You can also specify a MATLAB variable for sample time. The default value is
0.01 seconds. For information about simulation sample timing, see “What Is Sample
Time?” (Simulink)

Output New Message Received status
Select this check box to create a Msg Status output port. Its output signal indicates a
new incoming message, showing 1 for a new message received, or 0 when there is no
new message.

See Also
Blocks
J1939 Network Configuration | J1939 Node Configuration | J1939 Transmit

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

20 SAE J1939 Blocks

20-12

J1939 Transmit
Transmit J1939 message

Library
Vehicle Network Toolbox: J1939 Communication

Description
The J1939 Transmit block transmits a J1939 message. The J1939 database file defines the
nodes and parameter groups. You specify the J1939 database with the J1939 Network
Configuration block.

Note You need a license for both Vehicle Network Toolbox and Simulink software to use
this block.

Other Supported Features
The J1939 communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The J1939 communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

 J1939 Transmit

20-13

Block Inputs
• Data

Depending on the J1939 parameter group and signals defined in the J1939 database
file, the block can have multiple data input ports.

• Trigger

Enables the transmission of the message for that sample. A value of 1 specifies to
send, a value of 0 specifies not to send.

Parameters
Config name

The name of the J1939 network configuration to associate with. This is used to access
the corresponding J1939 database. Only the nodes defined in the model and
associated with the specified J1939 network configuration appear in the Node name
list. The option shows none if no J1939 network configuration is found.

Node name
The name of the J1939 node. The drop-down list includes all the nodes in the model,
both custom nodes and nodes from the database.

Parameter Group
The parameter group number (PGN) and name from the database. The contents of
this list vary depending on the parameter groups that the J1939 database file
specifies. The default is the first parameter group for the selected node.

Note If you change any parameter group settings within your J1939 database file,
you must then open the J1939 Transmit block dialog box and select the same
Parameter Group, then click OK or Apply to update the parameter group
information in the block.

Signals
Signals defined in the parameter group. The Min and Max settings are read from the
database, but by default the block does not clip signal values that exceed this range.

20 SAE J1939 Blocks

20-14

PG Priority
Priority of the parameter group, read from the database. This priority setting resolves
clashes of multiple parameter groups transmitting on the same bus at the same time.
If a conflict occurs, the priority group with lower priority (i.e., higher value) will
refrain from transmitting. The value can range from 0 (highest priority) to 7 (lowest).

Destination Address
Name of the destination node. The default is the first node defined in the database,
otherwise Custom.

For a custom destination address, you can specify 0–253 for the address of the
destination node. For broadcasting to all nodes, use the Custom Destination
Address setting with an address of 255.

See Also
Blocks
J1939 Network Configuration | J1939 Node Configuration | J1939 Receive

Topics
“Basic J1939 Communication over CAN”

Introduced in R2015b

 J1939 Transmit

20-15

Shared Memory Support

This topic describes implementations of reflective (shared) memory by various
manufacturers.

• “Create GE Fanuc Shared Partitions” on page 21-2
• “Initialize GE Fanuc Shared Nodes” on page 21-4
• “GE Fanuc Shared Partition Structure” on page 21-5
• “GE Fanuc Shared Node Initialization Structure” on page 21-7
• “Create Curtiss-Wright Shared Partitions” on page 21-12
• “Initialize Curtiss-Wright Shared Nodes” on page 21-14
• “Curtiss-Wright Shared Partition Structure” on page 21-15
• “Curtiss-Wright Shared Node Initialization Structure” on page 21-21

21

Create GE Fanuc Shared Partitions
The Simulink Real-Time software uses a model for reflective (shared) memory that
includes Simulink blocks for shared memory driver functions. To define node initialization
and shared memory partitions, the driver functions use MATLAB structures. This topic
describes the Simulink Real-Time support of the GE Fanuc Embedded Systems shared
memory boards.

To use the GE Fanuc Embedded Systems shared memory blocks, you must define shared
memory partition structures. A partition structure describes how you want to allocate
(partition) the shared memory. The Simulink Real-Time software allocates shared memory
as segments of data that are packed into memory regions or partitions. Along with the
Shared Memory Pack and Shared Memory Unpack blocks, the GE Fanuc Embedded
Systems shared memory blocks use shared memory partition structures.

After defining the shared memory partitions, you can add shared memory driver blocks to
your Simulink model. See “GE Fanuc Shared Partition Structure” on page 21-5 for the
complete list of fields in a partition.

The following description refers to the completepartitionstruct command. Type

help completepartitionstruct

for more information.

• Create a partition structure in one of the following ways. Using the
completepartitionstruct command at the MATLAB Command Window, create a
default partition structure. For example, type

Partition = completepartitionstruct([],'5565')

Partition =

 Address: '0x0'
 Type: 'uint32'
 Size: '1'
 Alignment: '4'
 Internal: [1x1 struct]

• At the MATLAB Command Window, create a user-defined partition structure. Partially
define a structure in a script file, run that script in the MATLAB workspace, and fill in
the resulting structure with the completepartitionstruct function. For example:

21 Shared Memory Support

21-2

Partition(1).Address='0x5000';
Partition(1).Type='int8';
Partition(1).Size='10';
Partition(2).Type='uint16';
Partition(2).Size='5';
Partition(3).Type='uint8';
Partition(3).Size='1';
Partition(3).Alignment='8';
Partition(4).Type='double';
Partition(4).Size='3';

This example defines a partition with four segments.

• The Address field is optional. Only specify this field for the first segment of a
partition. The elements of a partition are defined as a continuous memory block
from the first address. The function extrapolates segment addresses from the first
segment definition. If you have or require fragmented memory, use multiple
partitions.

• The Type and Size fields are required for all segments in the partition structure.
• The Alignment value is optional. It is '4' by default, which forces segments that

do not have alignment specifications to start on 4 byte (32 bit) boundaries. In the
preceding partition definition, the third segment (Partition(3)) has an
alignment of '8'.

• The data type, size, and alignment of the preceding segment define the base
addresses of subsequent segments.

• To populate the partition structure, call the completepartitionstruct()
command.

Partition = completepartitionstruct(Partition,'5565');

 Create GE Fanuc Shared Partitions

21-3

Initialize GE Fanuc Shared Nodes
In addition to GE Fanuc Embedded Systems shared memory partitions, you must also
define a node initialization structure before using the shared memory blocks. A node
initialization structure describes the shared memory partitions (see “Create GE Fanuc
Shared Partitions” on page 21-2) and the board configuration, including interrupt
settings.

After defining the node initialization structure, you can add shared memory driver blocks
to your Simulink model. See “GE Fanuc Shared Node Initialization Structure” on page 21-
7 for the complete list of fields in a node initialization structure.

The following description refers to the completenodestruct command. Type

help completenodestruct

for more information.

• Create a node initialization structure in one of the following ways. Using the
completenodestruct command at the MATLAB Command Window, create a default
node initialization structure. For example, type

node=completenodestruct([],'5565')

node =

 Interface: [1x1 struct]
 Partitions: [1x1 struct]

• Fill in the structure fields. For example:

node.Interface.NodeID = '128';
node.Partitions = Partition;

• A user-defined node structure, created with MATLAB code or from the MATLAB
Command Window and supplement the resulting structure with a call to the
completenodestruct function. For example:

node.Interface.NodeID = '128';
node.Partitions = Partition;
node.completenodestruct(node,'5565');

21 Shared Memory Support

21-4

GE Fanuc Shared Partition Structure
You do not need to use all the fields of a partition initialization structure. However,
knowing the possible structure fields is helpful when you are setting up to use shared
memory.

A shared memory partition structure has the following fields:

 Address: '0x0'
 Type: 'uint32'
 Size: '1'
 Alignment: '4'
 Internal: [1x1 struct]

where

Partition Fields Description
Address Specifies the base address (in hexadecimal) of the memory partition

within the shared memory space of the node. The default value is
'0x0', the first location in shared memory.

Align partition addresses on 32-bit word boundaries (for example,
0x0, 0x4, 0x8).

 GE Fanuc Shared Partition Structure

21-5

Partition Fields Description
Type Specifies the data type of the memory segment. Specify one of the

following types:

• single (IEEE Single Precision)
• double (IEEE Double Precision)
• uint8
• int8
• uint16
• int16
• uint32
• int32
• Boolean (a single byte represents a boolean value)

The default value is 'uint32'. The minimum partition size is 32
bits.

Size Specifies the dimension and size of the memory segment. You can
enter a scalar value or a value with the [m,n] format. The default
value is '1'.

• scalar — Treats the Size entry as the specification of the length
of a non-oriented array or vector

• [m,n] — Treats the Size entry as an array dimension. The total
number of elements in this segment is m*n.

Alignment If another partition precedes this partition, this field defines the
byte alignment of this segment. Specify one of the following
alignment values: 1, 2, 3, 4, or 8. The default value is '4'. This
value forces a double word boundary alignment.

Internal Reserved for internal use.

21 Shared Memory Support

21-6

GE Fanuc Shared Node Initialization Structure
A node initialization structure has the following fields:

 Interface: [1x1 struct]
 Partitions: [1x1 struct]

where

Node Structure
Fields

Description

Interface Specifies how the board is configured. The Interface structure has
the following fields, three of which are structures:

• Mode — Configures board registers (see “Board Mode” on page
21-7)

• Interrupts — Enables the board to generate PCI interrupts
from network events that have been broadcast from other
nodes, or in response to error conditions (see “Board
Interrupts” on page 21-8)

• NodeID — Specifies the node ID for the board (see “Board Node
ID” on page 21-10)

• Internal — Reserved for internal use
Partitions Stores the shared memory segments (see “Create GE Fanuc Shared

Partitions” on page 21-2)

Board Mode
The shared memory board has several registers that you can set through the
Interface.Mode field. To display the board mode fields, type:

>> node.Interface.Mode

ans =
 StatusLEDOff: 'off'
 TransmitterDisable: 'off'
 DarkOnDarkEnable: 'off'
 LoopbackEnable: 'off'
 LocalParityEnable: 'off'

 GE Fanuc Shared Node Initialization Structure

21-7

 MemoryOffset: '0'
 MemorySize: '64MByte'

The mode values interact with the board setting of the LSR1 (Local Control and Status
Register 1) and LIER (Local Interrupt Enable Register) registers. Refer to the board
product documentation for further details on these two registers. To monitor the status of
these modes, select the Error Status Port check box of the read or write blocks.

Of particular note are the following modes:

Board Modes Description
StatusLEDOff Turns the board status LED on and off. Setting this value to 'off'

turns off the LED when the Simulink Real-Time model runs, setting
this value to 'on' turns on the LED when the Simulink Real-Time
model runs. When the Simulink Real-Time software terminates, the
LED status reverses in both cases. The default value is 'off'.

MemoryOffset Applies a global offset to the network data transfers coming from
the board. The following table lists offset values and the resulting
offset. The default value is '0'.

MemorySize Specifies the minimum memory size required, in the format
'sizeMByte'. The board driver checks this value against the
memory size of the board. If you enter a size in this field that is
larger than the actual board memory size, the driver returns an
error.

This table lists the values for MemoryOffset:

Value Offset Produced
'0' 0
'1' 0x4000000
'2' 0x8000000
'3' 0xC000000

Board Interrupts
The board can generate PCI interrupts in response to network events that have been
broadcast from other nodes, or in response to error conditions. For example, you can
configure two Simulink Real-Time Simulink models, one as master, and one as a slave of

21 Shared Memory Support

21-8

the broadcast node in the master Simulink Real-Time model. In such a configuration, the
broadcast node interrupt triggers the model time steps.

To display the interrupt mode fields, type:

node.Interface.Interrupts

ans =
 LocalMemoryParity: 'off'
 MemoryWriteInhibited: 'off'
 LatchedSyncLoss: 'off'
 RXFifoFull: 'off'
 RXFifoAlmostFull: 'off'
 BadData: 'off'
 PendingInit: 'off'
 RoguePacket: 'off'
 ResetNodeRequest: 'off'
 PendingInt3: 'off'
 PendingInt2: 'off'
 PendingInt1: 'off'

Each field corresponds to a bit in the LIER register of the GE Fanuc Embedded Systems
shared memory board. Each bit enables the specified interrupt source on the board. Refer
to the board product documentation for further details on this register.

To enable a node to generate a network interrupt source, add the broadcast block to a
model (the master model). This block issues network interrupts at the model sample rate.
To enable other nodes of the network (the slave models) to accept broadcast interrupts,
configure the slave models to expect the broadcast interrupt.

The following procedure describes how to configure an entire Simulink Real-Time model
to accept a broadcast interrupt from the board.

1 From the MATLAB Command Window, type

tg = slrt;
getPCIInfo(tg, 'installed')

This command lists board information for the installed PCI devices that the Simulink
Real-Time software knows about.

2 Find the IRQ specified for the shared memory board.

To specify in the Real-Time interrupt source field of the Simulink Real-Time
Options pane, use this interrupt source number.

 GE Fanuc Shared Node Initialization Structure

21-9

3 Edit your script and add a line like the following.

node.Interface.Interrupts.PendingInt1='on'

This line directs the model to expect an interrupt. It assumes that the value of the
broadcast block Interrupt parameter is 1.

4 From the MATLAB Command Window, type the name of your Simulink model.

The Simulink model appears.
5 Select Simulation > Model Configuration Parameters
6 Select node Code Generation.
7 Select node Simulink Real-Time Options.
8 Set the Execution mode field to Real-Time.
9 Click the Real-Time interrupt source list.
10 Select the interrupt source number to which the board is set.
11 Click the I/O board generating the interrupt list and select

GE_Fanuc(VMIC)_PCI-5565 from the list.
12 Click OK.

Note If you have a larger model, to localize control of the interrupt within that model,
use the IRQ Source block from the Asynchronous Event sublibrary.

Board Node ID
The jumpers of the board specify the board node ID. Correspondingly, you can also
configure the block with the board node ID using the Interface.NodeID field. Enter
values according to the following:

NodeID Value Description
'any' Allows the board driver to work with a node regardless of the

board node ID jumper setting
value from '0' to '255' Specifies the particular node that the driver must look for. If

this value does not match the jumpered value on the board,
the driver returns an error.

21 Shared Memory Support

21-10

The default value of 'any' meets requirements in most instances. If you have multiple
shared-memory boards in your system, to identify the driver for a particular node, specify
a particular NodeID value.

 GE Fanuc Shared Node Initialization Structure

21-11

Create Curtiss-Wright Shared Partitions
The Simulink Real-Time software uses a model for reflective (shared) memory that
includes Simulink blocks for shared memory driver functions. To define node initialization
and shared memory partitions, the driver functions use MATLAB structures. This topic
describes Simulink Real-Time support of the Systran® shared memory board.

To use the Simulink Real-Time shared memory blocks, you must define shared memory
partition structures. A partition structure describes how you want to allocate (partition)
the shared memory. The Simulink Real-Time software allocates shared memory as
segments of data that are packed into memory regions or partitions. Along with the
Shared Memory Pack and Shared Memory Unpack blocks, the Systranshared memory
blocks use shared memory partition structures.

After defining the shared memory partitions, you can add shared memory driver blocks to
your Simulink model. See “Curtiss-Wright Shared Partition Structure” on page 21-15 for
the complete list of fields in a partition structure.

The following description refers to the completepartitionstruct command. Type

help completepartitionstruct

for more information.

• Create a partition structure in one of the following ways. Using the
completepartitionstruct command at the MATLAB Command Window, create a
default partition structure. For example, type

Partition = completepartitionstruct([],'scramnet')

Partition =
 Address: '0x0'
 Type: 'uint32'
 Size: '1'
 Alignment: '4'
 RIE: 'off'
 TIE: 'off'
 ExtTrigger1: 'off'
 ExtTrigger2: 'off'
 HIPRO: 'off'
 Internal: [1x1 struct]

21 Shared Memory Support

21-12

• At the MATLAB Command Window, create a user-defined partition structure. Partially
define a structure in a script file, run that script in the MATLAB workspace, and fill in
the resulting structure with the completepartitionstruct function. For example:

Partition(1).Address='0x5000';
Partition(1).Type='int8';
Partition(1).Size='10';
Partition(2).Type='uint16';
Partition(2).Size='5';
Partition(3).Type='double';
Partition(3).Size='3';
Partition(4).Type='uint8';
Partition(4).Size='[2, 3]';

This example defines a partition with four segments.

• The Address field is optional. Only specify this field for the first segment of a
partition. The elements of a partition are defined as a continuous memory block
from the first address. The function extrapolates segment addresses from the first
segment definition. If you have or require fragmented memory, use multiple
partitions.

• The Type and Size fields are required for all segments in the partition structure.
• The Alignment value is optional. It is '4' by default. This value forces segments

that do not have alignment specifications to start on 4 byte (32–bit) boundaries.
• The data type, size, and alignment of the preceding segment define the base

addresses of subsequent segments.
• To populate the partition structure, call the completepartitionstruct()

command.

Partition = completepartitionstruct(Partition,'scramnet');

 Create Curtiss-Wright Shared Partitions

21-13

Initialize Curtiss-Wright Shared Nodes
In addition to shared memory partitions, you must also define a node initialization
structure before using the Systran shared memory blocks. A node initialization structure
describes the shared memory partitions (see “Create Curtiss-Wright Shared Partitions” on
page 21-12) and the board configuration, including interrupt settings. The initialization
block requires a shared memory node initialization structure.

After defining the node initialization structure, you can add shared memory driver blocks
to your Simulink model. See “Curtiss-Wright Shared Node Initialization Structure” on
page 21-21 for the complete list of fields in a node initialization.

The following description refers to the completenodestruct command. Type

help completenodestruct

for more information.

• Create a node initialization structure in one of the following ways. Using the
completenodestruct command at the MATLAB Command Window, create a default
node initialization structure. For example, type

node=completenodestruct([],'scramnet')

node =

 Interface: [1x1 struct]
 Partitions: [1x1 struct]

• Fill in the structure fields. For example:

node.interface.NodeID = '128';
node.Partitions = Partition;

• A user-defined node structure, created with MATLAB code or from the MATLAB
Command Window and supplement the resulting structure with a call to the
completenodestruct function. For example:

node.Interface.NodeID = '128';
node.Partitions = Partition;
node = completenodestruct(node,'scramnet');

21 Shared Memory Support

21-14

Curtiss-Wright Shared Partition Structure
A shared memory partition structure has the following fields. You do not need to use all
the fields of a partition or node initialization structure. However, knowing the possible
structure fields is helpful when you are setting up to use shared memory.

 Address: '0x0'
 Type: 'uint32'
 Size: '1'
 Alignment: '4'
 RIE: 'off'
 TIE: 'off'
 ExtTrigger1: 'off'
 ExtTrigger2: 'off'
 HIPRO: 'off'
 Internal: [1x1 struct]

where

Partition Fields Description
Address Specifies the base address (in hexadecimal) of the memory partition

within the node shared memory space. The default value is '0x0',
the first location in shared memory. The base address is byte aligned.

 Curtiss-Wright Shared Partition Structure

21-15

Partition Fields Description
Type Specifies the data type of the memory segment. Specify one of the

following types:

• double
• float
• uint8
• int8
• uint16
• int16
• uint32
• int32
• boolean (a single byte represents a boolean value)

The minimum partition size is 32 bits.

The default value is 'uint32'.
Size Specifies the dimension and size of the memory segment. You can

enter a scalar value or a value with the [m,n] format. The default
value is '1'.

• scalar — Treats the Size entry as the specification of the length of
a non-oriented array or vector

• [m,n] — Treats the Size entry as an array dimension. The total
number of elements in this segment is m*n.

Alignment Specifies the byte alignment of the next partition (if one is defined).
Enter alignment value in bytes: 1, 2, 3, 4. The alignment value defines
the end of the current segment, and therefore the beginning
alignment of the next segment. The default value is '4', forcing a
double word boundary alignment. See “Alignment Examples” on page
21-19.

21 Shared Memory Support

21-16

Partition Fields Description
RIE Specifies whether this partition can receive interrupts (Receive

Interrupt Register (RIE)). Specify one of:

• 'off' (default) — Prevents the partition from receiving
interrupts.

• 'first' — Allows only the first double word of the memory
segment to be marked with the corresponding Auxiliary Control
RAM bit.

• 'all' — Allows all memory locations of the memory segment to
be marked with the corresponding Auxiliary Control RAM bit.

• 'last' — Allows only the last double word of the memory
segment to be marked with the corresponding Auxiliary Control
RAM bit.

TIE Specifies whether this partition can transmit interrupts (Transmit
Enable (TIE)). Specify one of:

• 'off' (default) — Prevents the partition from transmitting
interrupts.

• 'first' — Allows only the first double word of the memory
segment to be marked with the corresponding Auxiliary Control
RAM bit.

• 'all' — Allows all memory locations of the memory segment to
be marked with the corresponding Auxiliary Control RAM bit.

• 'last' — Allows only the last double word of the memory
segment to be marked with the corresponding Auxiliary Control
RAM bit.

 Curtiss-Wright Shared Partition Structure

21-17

Partition Fields Description
ExtTrigger1 If this partition receives a write access, specifies whether this

partition can generate a trigger signal to an external connector.
Specify one of:

• 'off' (default) — Prevents the partition from generating signals.
• 'first' — Allows only the first double word of the memory

segment to be marked with the corresponding Auxiliary Control
RAM bit.

• 'all' — Allows all memory locations of the memory segment to
be marked with the corresponding Auxiliary Control RAM bit.

• 'last' — Allows only the last double word of the memory
segment to be marked with the corresponding Auxiliary Control
RAM bit.

ExtTrigger2 If this partition receives a write access, specifies whether this
partition can generate a trigger signal to an external connector.
Specify one of:

'off' (default) — Prevents the partition from generating signals.

'first' — Allows only the first double word of the memory segment
to be marked with the corresponding Auxiliary Control RAM bit.

'all' — Allows all memory locations of the memory segment to be
marked with the corresponding Auxiliary Control RAM bit.

'last' — Allows only the last double word of the memory segment to
be marked with the corresponding Auxiliary Control RAM bit.

HIPRO Specifies whether the elements in this partition can be transmitted as
one network message. Specify one of:

'off' (default) — Prevents the partition from transmitting the
elements as one message

'on' — Allows the partition to transmit the elements as one message
Internal Reserved for internal use.

21 Shared Memory Support

21-18

Alignment Examples
This example shows the shared memory map with default alignment values.

Partition1(1).Type='int32';
Partition1(1).Size='1';

Partition1(2).Type='boolean';
Partition1(2).Size='1';

Partition1(3).Type='uint32';
Partition1(3).Size='1';
Partition1 = completepartitionstruct(Partition1,'scramnet');

This example shows the shared memory map with alignment value changed from 4 to 1 in
the second partition.

Partition1(1).Type='int32';
Partition1(1).Size='1';
Partition1(1).Alignment='4';

Partition1(2).Type='boolean';
Partition1(2).Size='1';
Partition1(2).Alignment='1';

Partition1(3).Type='uint32';
Partition1(3).Size='1';
Partition1 = completepartitionstruct(Partition1,'scramnet');

This example shows the shared memory map with alignment value changed from 4 to 2 in
the second partition.

Partition1(1).Type='int32';
Partition1(1).Size='1';
Partition1(1).Alignment='4';

Partition1(2).Type='boolean';

 Curtiss-Wright Shared Partition Structure

21-19

Partition1(2).Size='1';
Partition1(2).Alignment='2';

Partition1(3).Type='uint32';
Partition1(3).Size='1';
Partition1 = completepartitionstruct(Partition1,'scramnet');

21 Shared Memory Support

21-20

Curtiss-Wright Shared Node Initialization Structure
A node initialization structure has the following fields:

 Interface: [1x1 struct]
 Partitions: [1x1 struct]

where

Node Structure
Fields

Description

Interface Specifies settings for the board Control/Status Register (CSR). The
Interface structure has the following fields. Refer to the board
product documentation for a description of the CSR and its operation
modes.

• Mode — Configures board modes (see “Board Mode” on page 21-
21)

• Timeout — Enables the board to set the timeout value (see
“Board Timeout” on page 21-23)

• DataFilter — Controls the data filtering operation (see “Board
Data Filter” on page 21-23)

• VirtualPaging — Controls the board virtual paging operation
(see “Virtual Paging” on page 21-24)

• Interrupts — Enables the board to generate and receive
interrupts from the network (see “Board Interrupts” on page 21-
24)

• Internal — Reserved for internal use
Partitions Stores the shared memory segments (see “Create Curtiss-Wright

Shared Partitions” on page 21-12)

Board Mode
The Systranshared memory board has modes that you can set through the
Interface.Mode field. The Interface Mode fields set the corresponding bits in the CSR.
To display the board mode fields, type:

>> node.Interface.Mode
ans =

 Curtiss-Wright Shared Node Initialization Structure

21-21

 NetworkCommunicationsMode: 'TransmitReceive'
 InsertNode: 'on'
 DisableFiberOpticLoopback: 'on'
 EnableWireLoopback: 'off'
 DisableHostToMemoryWrite: 'off'
 WriteOwnSlotEnable: 'off'
 MessageLengthLimit: '256'
 VariableLengthMessagesOnNetwork: 'off'
 HIPROEnable: 'off'
 MultipleMessages: 'on'
 NoNetworkErrorCorrection: 'on'
 MechanicalSwitchOverride: 'on'
 DisableHoldoff: 'on'

These modes have the following values:

Field Values Default CSR
NetworkCommunications Mode 'none',

'receiveonly',
'transmitonly',
'transmit
receive'

'transmit
receive'

CSR3[8..15]

InsertNode 'off', 'on' 'on' CSR0[0..1]
DisableFiberOptic Loopback 'off', 'on' 'on' CSR2[6]
EnableWire Loopback 'off', 'on' 'off' CSR2[7]
DisableHost ToMemory Write 'off', 'on' 'off' CSR2[8]
WriteOwnSlotEnable 'off', 'on' 'off' CSR2[9]
Message LengthLimit '256', '1024' '256' CSR2[11]
Variable Length MessagesOn
Network

'off', 'on' 'off' CSR212]

HIPROEnable 'off', 'on' 'off' CSR2[13]
Multiple Messages 'off', 'on' 'on' CSR2[14]
NoNetwork Error Correction 'off', 'on' 'on' CSR2[15]
Mechanical Switch Override 'off', 'on' 'on' CSR8[11]
Disable Holdoff 'off', 'on' 'on' CSR8[11]

21 Shared Memory Support

21-22

Board Timeout
The Systranshared memory board allows you to set the network timeout through the
Interface.Timeout field. The Interface Timeout fields set the corresponding bits in the
CSR.

To display the timeout fields, type:

>> node.Interface.Timeout
ans =
 NumOfNodesInRing: '2'
 TotalCableLengthInM: '2'

These fields have the following values:

Field Values Default CSR
NumOfNodes InRing '0' to '255' '2' CSR5
TotableCable LengthInM '0' to 'n' '2' CSR5

Refer to the board product documentation for a description of these fields.

Board Data Filter
The Systranshared memory board allows you to set the data filter operation through the
Interface.DataFilter field. The Interface DataFilter fields set the corresponding bits
in the CSR.

>> node.Interface.DataFilter
ans =
 EnableTransmitDataFilter: 'off'
 EnableLower4KBytesForDataFilter: 'off'
 >>

These fields have the following values:

Field Values Default CSR
Enable TransmitData Filter 'off', 'on' 'off' CSR0[10]
EnableLower4KBytesFor DataFilter 'off', 'on' 'off' CSR0[11]

 Curtiss-Wright Shared Node Initialization Structure

21-23

Virtual Paging
The Systran shared memory board allows you to set the bits of the Virtual Paging Register
operation through the Interface.VirtualPaging field. The Interface VirtualPaging
fields set the corresponding bits in the CSR.

>> node.Interface.VirtualPaging
ans =
 VirtualPagingEnable: 'off'
 VirtualPageNumber: '0'

These fields have the following values:

Field Values Default CSR
VirtualPagingEnable 'off', 'on' 'off' CSR12[0]
VirtualPage Number '0' to '2047' '0' CSR12[5..15]

Board Interrupts
The Systran shared memory board allows you to specify the interrupt sources transmitted
and received between the nodes of the network. You can set these bits through the
Interface.Interrupts field. The Interface Interrupts fields set the corresponding bits
in the CSR.

>> node.Interface.Interrupts
ans =
 HostInterrupt: 'off'
 InterruptOnMemoryMaskMatch: 'off'
 OverrideReceiveInterrupt: 'off'
 InterruptOnError: 'off'
 NetworkInterrupt: 'off'
 OverrideTransmitInterrupt: 'off'
 InterruptOnOwnSlot: 'off'
 ReceiveInterruptOverride: 'off'

These fields have the following values:

Field Values Default CSR
HostInterrupt 'off', 'on' 'off' CSR0[3]
InterruptOn MemoryMask Match 'off', 'on' 'off' CSR0[5]

21 Shared Memory Support

21-24

Field Values Default CSR
Override Receive Interrupt 'off', 'on' 'off' CSR0[6]
InterruptOn Error 'off', 'on' 'off' CSR0[7]
Network Interrupt 'off', 'on' 'off' CSR0[8]
Override Transmit Interrupt 'off', 'on' 'off' CSR0[9]
InterruptOn OwnSlot 'off', 'on' 'off' CSR2[10]
Receive Interrupt Override 'off', 'on' 'off' CSR8[10]

 Curtiss-Wright Shared Node Initialization Structure

21-25

Video, XCP

27

Video Image Processing

• “Process Video Images with Simulink Real-Time” on page 22-2
• “USB Video Display on Development Computer” on page 22-3
• “USB Video Display on Target Computer” on page 22-4
• “Serial Camera Configuration” on page 22-5

22

Process Video Images with Simulink Real-Time
The Simulink Real-Time software supports webcams compliant with the USB Video Class
(UVC) standard and cameras compliant with the Automated Imaging Association Camera
Link® standard.

Note UVC-compliant cameras are often referred to as "driverless webcams". For more
information, see your camera documentation.

Using blocks from the Simulink Real-Time Video library, on your target computer, you can
do the following:

• Acquire real-time video frames from cameras connected to the target computer.
• Display the real-time image on the target computer monitor.
• Process or reduce the real-time image, for instance to specify a region of interest.
• Compress video frames acquired on the target computer.
• Stream video frames acquired on the target computer to the development computer.

Using blocks from the Computer Vision System Toolbox™ or Image Processing Toolbox™,
on your development computer, you can do the following:

• Receive images from the target computer.
• Decompress video frames on the development computer.
• Process or reduce images.
• Display images on the development computer.

22 Video Image Processing

22-2

USB Video Display on Development Computer
The following workflow acquires and displays video frames using a USB Video Class
(UVC) compliant webcam. To view the images on the development computer, compress
the video frames on the target computer and transmit them to the development computer.
You then decompress and display the video frames.

1 Enable USB general support on the target computer. See Speedgoat target computer
documentation.

2 Acquire a USB Video Class (UVC) compliant webcam, and then connect it to the
target computer USB port.

3 To query the available camera configurations, add the USB Video Device List block.
4 Add the image input block From USB Video Device to the portion of the model that

runs on the target computer. Configure the block as required.
5 If your USB camera does not support on-chip JPEG compression, add the JPEG

Compression block to the target computer portion. Connect this block to the output
of the image input block.

6 Add the Image Transmit block to the target computer portion. Connect this block to
the output of the compression block. Configure the block to transmit frames to the
development computer.

7 Add the Image Receive block to the portion of the model that runs on the
development computer. Configure the block to receive frames from the target
computer.

8 Add the JPEG Decompression block to the development computer portion. Connect
this block to the output of the Image Receive block.

9 Add the To Video Display block from the Computer Vision System Toolbox to the
development computer portion.

10 Build and download the target computer portion of the model to the target computer.
11 Run the development computer portion of the model on the development computer.

 USB Video Display on Development Computer

22-3

USB Video Display on Target Computer
The following workflow acquires and displays video frames using a USB Video Class
(UVC) compliant webcam. To view the images on the target computer, use a Video Display
block.

1 Enable USB general support on the target computer. See Speedgoat target computer
documentation.

2 Acquire a USB Video Class (UVC) compliant webcam, and then connect it to the
target computer USB port.

3 To query the available camera configurations, add the USB Video Device List block.
4 Add the image input block From USB Video Device to the portion of the model that

runs on the target computer. Configure the block as required.

Record the setting of the Image signal parameter.
5 Add the Video Display block. Set its Image signal parameter to match the

corresponding setting in the From USB Video Device block.
6 Build and download the target computer portion of the model to the target computer.
7 Execute the model on the target computer.

22 Video Image Processing

22-4

Serial Camera Configuration
To enter a serial command for the camera, enter it without quotation marks in the
Camera configuration serial command text box.

Enter multiple commands as one line without white space.

Each camera manufacturer has a serial command set documented in the manual for each
camera or family of cameras. Each command set is different from any other. For example,
suppose that you want to put a camera from the given series into triggered mode and to
set the shutter time to 1 ms. Use these settings and serial setup commands.

Camera Series Mask Settings Serial Setup
CIS VCC G21 9600 baud

8 bits

No parity

000000W004001\r

000000W002005\r

Pulnix TM1400 9600 baud

8 bits

No parity

:SA5\r

Sony XCL 38,400 baud

8 bits

No parity

SHUTTER 7\r

TRG_MODE 1\r

Cohu 7800 9600 baud

8 bits

No parity

\002\0377cE2,10chk
\003

\002\0377cM2chk\003

\002\0377T0,1chk\003

chk is a checksum for the
given portion of the
message.

 Serial Camera Configuration

22-5

For your camera, find the required command codes in the manufacturer documentation
for that specific camera. If those codes are not in the manual, contact the camera
manufacturer.

Some cameras return a success or failure value in response to the serial command. The
image input block dialog box includes a check box to allow the software to display such
values. Some responses include non-printable control characters, displayed as C escape
sequences.

Escape Sequence Control Character Definition
\r CR Carriage Return
\002 STX Start of Text
\003 ETX End of Text
\006 ACK Acknowledge
\025 NACK Negative Acknowledge

Some camera manufacturers offer Windows utilities to send configuration commands to
their cameras. Using such a utility, you can configure the camera on Windows and save
the settings on the camera. You can then connect the camera to the target computer and
use it.

Other camera manufacturers require a special serial cable that connects the serial
communication line of the camera to a separate serial connection. In this case, you cannot
initialize the camera using settings in the Camera configuration serial command
section. Instead, you connect the DB9 to a serial port on the development computer and
use manufacturer software to configure the camera before use.

22 Video Image Processing

22-6

Video Blocks

23

From USB Video Device
From USB Video Device block

Library
Simulink Real-Time Library for USB Camera

Description
The From USB Video Device block enables you to acquire real-time video frames or still
images from a USB Video Class (UVC) webcam. You attach the webcam to a USB port on
the target computer. After you acquire the image, you can:

• Display the output on the target computer monitor using a Video Display block.
• Stream captured frames to the development computer display (for example, using the

To Video Display block from Computer Vision System Toolbox).
• Analyze the image signals on the development computer.
• Compress or decompress the input signal with the JPEG Compression or JPEG

Decompression blocks.

When you add this block, also add the USB Video Device List block to help configure the
webcam.

The Image signal setting determines the Image signal setting for blocks receiving this
signal, such as the Video Display block.

Note When you execute a model containing a From USB Video Device block on a single-
core target computer, insufficient time is sometimes available to process frames received

23 Video Blocks

23-2

through the USB port. Under these conditions, the block can drop frames. If the block is
dropping frames, specify a larger frame interval, lengthen the sample time, or use a
multicore target computer.

Block Parameters
Configuration

Select a configuration that you specified in the USB Video Device List block. When
you click the Reload Device List button on the USB Video Device List block, this
configuration list is updated.

Port address (-1 for any)
Specify the port to which the webcam is attached. Enter -1 for any USB port.

Image width
Enter the width of the image input from the USB port, in pixels.

Image height
Enter the height of the image input from the USB port, in pixels.

Frame interval
Select the sample time between frame transfers:

• 1/60
• 1/30
• 1/25
• 1/20
• 1/15
• 1/10
• 1/7.5
• 1/5

Frame format
Select whether the incoming frames are to be compressed:

• Uncompressed

Do not compress frames.

 From USB Video Device

23-3

• MJPEG

Compress frames using Motion JPEG format. Each frame is individually
compressed as a JPEG image. Selecting this option disables the Color format and
Image signal parameters.

Color format
Select the color format for the incoming frames:

• RGB24 (8:8:8)

Output frames using RGB24 color encoding.
• YCbCr (4:2:2)

Output frames using YCbCr color encoding.

Image signal

• One multidimensional signal

One signal where each dimension contains color information. Selecting this option
creates one port, Image.

• Separate color signals

Multiple color signals where each signal contains the information for one color.
Selecting this option creates the following ports, depending upon the colorspace.

• RGB: ports R, G, B
• YCbCr: ports Y, Cb, Cr

Show trigger input
Select this check box to display an input port, Trigger, for the block.

Show length output
Select this check box to display an output port, Length, for the block.

See Also
Topics
“Serial Camera Configuration” on page 22-5

23 Video Blocks

23-4

Introduced in R2011a

 From USB Video Device

23-5

Image Receive
Receive video image
Library: Simulink Real-Time / Video / Video Utilities

Description
Specify the source computer that the Image Receive block receives a video image from by
using the IPv4 address-and-port pair.

Ports
Output Arguments
Data — Video data received by block
[byte]

Byte vector containing video data received by the block.

Status — Status of frame capture
1 | 0

Outputs 1 if the block received a full fixed-length frame. Otherwise, outputs 0.
Dependency

This output is available when the Allow variable length packets check box is not
selected.

Length — Number of bytes received
numeric

Outputs the number of bytes that the block received.

23 Video Blocks

23-6

Dependency

This output replaces the Status output when you select the Allow variable length
packets check box.

Parameters
IP address to receive from (0.0.0.0 for accepting all) — Source IP
address
'0.0.0.0' (default) | 'xx.xx.xx.xx'

Enter a valid IPv4 address as a dotted decimal character vector for the source address,
for example, 10.10.10.3. You can also use a MATLAB expression that returns a valid IPv4
address as a character vector.

The default address, 0.0.0.0, enables the block to accept frames from any accessible
computer. If you set this parameter to a specific IP address, packets arriving from only
that IP address are received.

The IP port to receive from parameter specifies the port for the source.

Programmatic Use
Block Parameter: ipAdd

IP port to receive from — Source port
numeric

Specify the port of the computer from which to receive the video frames.

The IP address to receive from parameter specifies the IP address for the source.

Programmatic Use
Block Parameter: ipPort

Output port width (number of bytes) — Number of bytes that the block can
propagate
50 * 1024 (default) | numeric

Number of bytes that the block can output in one sample time.

Allow variable length packets is selected:

 Image Receive

23-7

• Data size > Output port width — Block ignores the packet.
• Data size ≤ Output port width — Block outputs packet data through the Data port

and packet length through the Length port. Use packet length to consume data.

Allow variable length packets is not selected:

• Data size ≠ Output port width — Block ignores the packet.
• Data size = Output port width — Block outputs packet data through the Data port.

The Status port is set to 1.

Programmatic Use
Block Parameter: width

Allow variable length packets — Receive variable-length frames
0 (default) | 1

Select this check box to enable the reception of variable-length frames. For example, use
this option for compressed frames because the length of each frame varies.

Selecting this parameter replaces the default Status output port with the Length output
port.

Programmatic Use
Block Parameter: vblLen

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampletime

See Also
Image Transmit

Topics
“Serial Camera Configuration” on page 22-5

23 Video Blocks

23-8

Introduced in R2011a

 Image Receive

23-9

Image Transmit
Transmit video frame
Library: Simulink Real-Time / Video / Video Utilities /

Baseboard Serial Internal blocks

Description
The Image Transmit block sends the video frame from one computer to another computer.
The computers can be two target computers or one development computer and one target
computer. Specify the destination computer by IPv4 address-and-port pair.

Ports

Input
Data — Video data to transmit
[byte]

Byte vector containing video data for the block to transmit.

Length — Number of bytes of video data
numeric

Number of bytes to transmit.

Dependency

This input is available when you select the Allow variable length packets check box.

23 Video Blocks

23-10

Parameters
IP address sent to (255.255.255.255 for broadcast) — Computer IP
address
'255.255.255.255' (default) | 'xx.xx.xx.xx'

Specify the IPv4 address of the computer to which you send the video frames. To
broadcast the video frames to all listening computers, enter 255.255.255.255. The
Remote IP port to send to parameter specifies the port for the destination.
Programmatic Use
Block Parameter: ipAdd

Remote IP port to send to — Computer port
numeric

Specify the computer port to which you send the video frames. The IP address sent to
(255.255.255.255 for broadcast) parameter specifies the IP address for the
destination.
Programmatic Use
Block Parameter: ipPort

Use the following local IP port (-1 for automatic port assignment) —
Local computer port
numeric

Specify the computer port from which to send the video frames.

To assign automatically a port for the computer, enter -1.
Programmatic Use
Block Parameter: localPort

Allow variable length packets — Transmit variable-length frames
0 (default) | 1

Select this check box to enable the transmission of variable-length frames. For example,
use this option for compressed frames because the length of each frame varies.

If you select this check box, the Data port sends the actual data. The Length input port
sends the number of bytes being transmitted. If the port size is less than Length, the
block sends up to the port size.

 Image Transmit

23-11

If this check box is not selected (default), the block sends only fixed-length packets.

Selecting this parameter displays the Length output port.

Programmatic Use
Block Parameter: vblLen

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: sampletime

See Also
Image Receive

Topics
“Serial Camera Configuration” on page 22-5

Introduced in R2011a

23 Video Blocks

23-12

JPEG Compression
JPEG Compression block

Library
Simulink Real-Time Library for Video Utilities

Description
The JPEG Compression block compresses the video frame received by the target
computer.

Block Inputs and Outputs
Inputs

Name Description
Image Video frame to compress

 JPEG Compression

23-13

Outputs

Name Description
Data Vector of byte containing video data

compressed by block.
Length Number of bytes of compressed data.

Visible when the Show output image
length check box is set.

Block Parameters
Compression quality (-1:default)

Enter a value between 0 and 100 to specify how much to compress the incoming
video frame. The lower the value, the less the compression quality.

Enter -1 to use the default compression quality for the video frame.
Input colorspace

One of the following:

• Grayscale

Compress the video frame using a grayscale color space scheme.
• YCbCr 4;4:4

Compress the video frame using the YCbCr color space scheme.
• RGB

Compress the video frame using the red, blue, green (RGB) color space scheme.

Image signal

• One multidimensional signal

One signal where each dimension contains color information. Selecting this option
creates one port, Image.

• Separate color signals

23 Video Blocks

23-14

Multiple color signals where each signal contains the information for one color.
Selecting this option creates the following ports, depending upon the colorspace.

• Grayscale: port Image
• RGB: ports R, G, B
• YCbCr: ports Y, Cb, Cr

Max output image size (bytes)
Enter the maximum output size for the compressed video frame, in bytes. Use format
height * width.

Show output image length
Select this check box to output the video frame length. Selecting this check box
displays the Length port.

See Also
JPEG Decompression

Introduced in R2011a

 JPEG Compression

23-15

JPEG Decompression
JPEG Decompression block

Library
Simulink Real-Time Library for Video Utilities

Description
The JPEG Decompression block decompresses the video frame received by the target
computer.

Block Inputs and Outputs
Inputs

Name Description
Data Vector of byte containing video data for

the block to decompress.
Trigger Trigger for video decompression, active

high.

Visible when the Show trigger input
check box is set.

23 Video Blocks

23-16

Outputs

Name Description
Image Decompressed video frame

Block Parameters
Image width

Specify the width, in bytes, of the video frame to be decompressed.
Image height

Specify the height, in bytes, of the video frame to be decompressed.
Output colorspace

One of the following:

• Grayscale

Compress the video frame using a grayscale color space scheme.
• YCbCr 4;4:4

Compress the video frame using the YCbCr color space scheme.
• RGB

Compress the video frame using the red, blue, green (RGB) color space scheme.

Image signal

• One multidimensional signal

One signal where each dimension contains color information. Selecting this option
creates one port, Image.

• Separate color signals

Multiple color signals where each signal contains the information for one color.
Selecting this option creates the following ports, depending upon the colorspace.

• Grayscale: port Image
• RGB: ports R, G, B

 JPEG Decompression

23-17

• YCbCr: ports Y, Cb, Cr

Show trigger input
Select this check box to display an input port, Trigger, for the block.

See Also
JPEG Compression

Introduced in R2011a

23 Video Blocks

23-18

USB Video Device List
USB Video Device List block

Library
Simulink Real-Time Library for USB Camera

Description
When you connect a USB Video Class (UVC) webcam to the target computer, the USB
Video Device List block probes the device and displays the manufacturer information of
the webcam. Based on this information, the block configures its parameters with
supported options. You can choose the configuration parameters required by your USB
webcam, and then name the configuration for future use.

When you add the From USB Video Device block to your model, add the USB Video
Device List block. You need the USB Video Device List block to configure the webcam.

Block Parameters
Manufacturer

Select the manufacturer for the installed webcam.
Format

Select an image format that the connected webcam supports, for example, MJPEG.
Resolution

Select a supported resolution for the image.

 USB Video Device List

23-19

Interval
Select the sample time for the video frame.

Configurations
Use this parameter to store and name a particular configuration. A configuration
consists of the settings that you select for a particular webcam.

After you select the options in the other parameters:

1 In the edit field, enter a name for the configuration.
2 Click the Add button to add the configuration.

To remove the configuration, click the Remove button.
Reload Device List

Click this button to refresh the list of webcam information. Clicking this button also
updates the mask and parameters for the From USB Video Device block.

See Also
Image Receive

Topics
“Serial Camera Configuration” on page 22-5

Introduced in R2011a

23 Video Blocks

23-20

Video Display
Video Display block

Library
Simulink Real-Time Library for Video Utilities

Description
When you add the Video Display block to your model, you can display an RGB video signal
on the target computer. The signal can come from a USB Video webcam or a constant
block.

The Image signal setting must match the Image signal setting for the camera output
block.

There can be no more than two Video Display blocks in a model. The combined number of
Video Display blocks and target scopes cannot exceed nine.

Block Parameters
Image signal

• One multidimensional signal

One signal where each dimension contains color information. Selecting this option
creates one port.

• Separate color signals

 Video Display

23-21

Multiple color signals where each signal contains the information for one color.
Selecting this option creates three ports.

Image colorspace
Can only be RGB.

See Also
“Target Scope Usage”

Introduced in R2014b

23 Video Blocks

23-22

XCP Master Mode

24

XCP Master Mode
The Universal Measurement and Calibration Protocol (XCP) is a network protocol that you
can use to connect calibration systems to electronic control units (ECUs).

A node in the network can run in either master mode or slave mode. Simulink Real-Time
supports using XCP in master mode to replace (bypass) a subsystem of the ECU
controller. The bypass model applies stimulus to the subsystem output signals and
acquires signal response from the ECU controller.

To support XCP master mode, the Simulink Real-Time software provides the XCP
sublibrary. You can:

• Parse A2L (ASAP2 database) files.
• Synchronize one or more slave or ECU devices.
• Initialize an XCP slave server running in an ECU.
• Apply stimulus data.
• Acquire real-time measurement data when specific events occur.

To create models to run in master mode:

• Provide an A2L (ASAP2) format file that contains signal and parameter access
information for the slave ECUs and for the XCP-specific network elements.

• Provide an XCP Configuration block to load the A2L data into the XCP database.
• Provide one XCP CAN Transport Layer or XCP UDP Transport Layer block for each

XCP Configuration block.

Simulink Real-Time supports XCP implemented by using FIFO mode CAN or real-time
UDP as transport protocols.

• Apply stimulus data to the slave device by using the XCP Data Stimulation block.
• Acquire measurement data from the slave device by using the XCP Data Acquisition

block.

See Also
XCP CAN Transport Layer | XCP Configuration | XCP Data Acquisition | XCP Data
Stimulation | XCP UDP Transport Layer

24 XCP Master Mode

24-2

More About
• “CAN”
• “Real-Time UDP”
• “Third-Party Calibration Support”

 See Also

24-3

XCP Blocks

25

XCP CAN Transport Layer
Generate and consume XCP messages that are transported by CAN hardware
Library: Simulink Real-Time / XCP

Description
The XCP CAN Transport Layer block handles CAN messages that your model transmits or
receives with Simulink Real-Time CAN library blocks.

Connect the input side of the block to a block that receives CAN messages. Connect the
output side of the block to a block that transmits the XCP messages over CAN. Set up the
transmitting block so that a CAN message is sent only when an XCP message is available.
Otherwise, the block sends 0 byte data when XCP messages are not available, causing
undefined behavior.

Ports

Input
CAN Msg — CAN MESSAGE structures being consumed
vector

Vector of CAN MESSAGE structures being consumed

N — Number of messages
integer

Number of messages in the vector

25 XCP Blocks

25-2

Output
CAN Msg — CAN MESSAGE structures being generated
vector

Vector of CAN MESSAGE structures being generated

N — Number of messages
integer

Number of messages in the vector

See Also
XCP Configuration | XCP Data Acquisition | XCP Data Stimulation

External Websites
www.asam.net

Introduced in R2014a

 XCP CAN Transport Layer

25-3

https://www.asam.net

XCP Configuration
Configure XCP slave connection

Library
XCP Communication

Description
The XCP Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish XCP slave connection.

Specify the A2L file to use in your XCP Configuration before you acquire or stimulate
data. Use one XCP Configuration to configure one slave for data acquisition or
stimulation. If you add Data Acquisition and Data Stimulation blocks, your model checks
to see if there is a corresponding XCP Configuration block and will prompt you to add
one.

Other Supported Features
The XCP communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The XCP communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

25 XCP Blocks

25-4

Parameters
Config name

Specify a unique name for your XCP session.
A2L File

Click Browse to select an A2L file for your XCP session.
Enable seed/key security

Select this option if your slave requires a secure key to establish connection. You need
to select a file that contains the seed/key definition to enable the security.

File (*.DLL)
This field is enabled if you select Enable seed/key security. Click Browse to select
the file that contains seed and key security algorithm used to unlock an XCP slave
module.

Output connection status
Select this option to display the status of the connection to the slave module.
Selecting this option adds a new output port.

See Also
Introduced in R2013a

 XCP Configuration

25-5

XCP Data Acquisition
Acquire selected measurements from configured slave

Library
XCP Communication

Description
The XCP Data Acquisition block acquires data from the configured slave based on the
selected measurements. The block uses the XCP CAN transport layer to obtain raw data
for the selected measurements at the specified simulation time step. Configure your XCP
connection and use the XCP Data Acquisition block to select your event and
measurements for the configured slave. The block displays the selected measurements as
output ports.

Note A model with XCP Data Acquisition blocks does not disconnect from the XCP slave
when the simulation ends. The model continues to acquire measurements until the data
transmission from the XCP slave is terminated.

Other Supported Features
The XCP communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The XCP communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

25 XCP Blocks

25-6

Dialog Box
Use the Block Parameters dialog box to select your data acquisition parameters.

 XCP Data Acquisition

25-7

25 XCP Blocks

25-8

Parameters
Config name

Select the name of XCP configuration you want to use. The list displays all available
names specified in the available XCP Configuration blocks in the model. Selecting a
configuration displays events and measurements available in this configuration’s A2L
file.

Note You can acquire measurements for only one event using an XCP Data
Acquisition block. Use one block each for each event whose measurements you want
to acquire.

Event name
Select an event from the available list of events. The XCP Configuration block uses
the specified A2L file to populate the events list.

Measurements
Search

Type the name of the measurement you want to use. The All Measurements lists
displays a list of all matching terms. Click the x

to clear your search.
All Measurements

This list displays all measurements available for the selected event. Select the

measurement you want to use and click the add button, to add it to the selected
measurements. Hold the Ctrl key on your keyboard to select multiple measurements.

Selected Measurements
This list displays selected measurements. To remove a measurement from this list,

select the measurement and click the remove button, .

 XCP Data Acquisition

25-9

Toggle buttons

Use the toggle buttons to reorder the selected measurements.
DAQ List Priority

Specify a priority value as an integer from 0 to 255 for the slave device driver to
prioritize transmission of data packets. The slave may accumulate XCP packets for
lower priority DAQ lists before transmission to the master. A value of 255 has the
highest priority. The SET_DAQ_LIST_MODE command communicates the DAQ List
Priority value from master to slave. This communication method differs from the
specification of the Event Channel Priority property, which comes from the A2L file.

Sample time
Specify the sampling time of the block during simulation, which is the simulation time
as described by the Simulink documentation. This value defines the frequency at
which the XCP Data Acquisition block runs during simulation. If the block is inside a
triggered subsystem or to inherit sample time, you can specify –1 as your sample
time. You can also specify a MATLAB variable for sample time. The default value is
0.01 (in seconds).

See Also
XCP Configuration

Introduced in R2013a

25 XCP Blocks

25-10

XCP Data Stimulation
Perform data stimulation on selected measurements

Library
XCP Communication

Description
The XCP Data Stimulation block sends data to the selected slave for the selected event
measurements. The block uses the XCP CAN transport layer to output raw data for the
selected measurements at the specified stimulation time step. Configure your XCP session
and use the XCP Data Stimulation block to select your event and measurements on the
configured slave. The block displays the selected measurements as input ports.

Other Supported Features
The XCP communication blocks support the use of Simulink Accelerator and Rapid
Accelerator mode. Using this feature, you can speed up the execution of Simulink models.
For more information on this feature, see the Simulink documentation.

The XCP communication blocks also support code generation with limited deployment
capabilities. Code generation requires the Microsoft C++ compiler.

Dialog Box
Use the Block Parameters dialog box to select your data stimulation parameters.

 XCP Data Stimulation

25-11

Parameters
Config name

Select the name of XCP configuration you want to use. The list displays all available
names specified in the available XCP Configuration blocks in the model. Selecting a

25 XCP Blocks

25-12

configuration displays events and measurements available in this configuration’s A2L
file.

Note You can stimulate measurements for only one event using an XCP Data
Stimulation block. Use one block each for each event whose measurements you want
to stimulate.

Event name
Select an event from the available list of events. The XCP Configuration block uses
the specified A2L file to populate the events list.

Measurements
Search

Type the name of the measurement you want to use. The All Measurements lists
displays a list of all matching terms. Click the x

to clear your search.
All Measurements

This list displays all measurements available for the selected event. Select the

measurement you want to use and click the add button, to move it to the
selected measurements. Hold the Ctrl key on your keyboard to select multiple
measurements.

Selected Measurements
This list displays selected measurements. To remove a measurement from this list,

select the measurement and click the remove button, .
Toggle buttons

Use the toggle buttons to reorder the selected measurements.

 XCP Data Stimulation

25-13

See Also
Introduced in R2013a

25 XCP Blocks

25-14

XCP UDP Transport Layer
Send and receive XCP messages over real-time UDP
Library: Simulink Real-Time / XCP

Description
The XCP UDP Transport Layer block uses the specified Ethernet device to send and
receive XCP messages. Specify the Ethernet device using the PCI bus, slot, and function
numbers.

The combination of Local IP Address and Subnet mask must be unique across all
Ethernet cards in the target computer, including the card for communicating between the
development and target computers. Distinguish cards by specifying a different subnet for
each. The subnet is the IP address masked by the subnet mask.

Parameters
Local IP Address — IP address for the Ethernet interface
x.x.x.x

Enter the IP address for the dedicated Ethernet board.

The addresses 0.0.0.0 and 255.255.255.255 are invalid local IP addresses.

Programmatic Use
Block Parameter: MasterIpAddress

Local port (0 for automatic assignment) — Port address for the Ethernet
interface
0 (default) | integer

If Local port is 0, the block chooses a port address from those available.

 XCP UDP Transport Layer

25-15

Programmatic Use
Block Parameter: Port

Subnet mask — Subnet mask for interface
255.255.255.0 (default) | x.x.x.x

Mask that designates a logical subdivision of a network.

Programmatic Use
Block Parameter: SubnetMask

Gateway — IP address for gateway interface
0.0.0.0 (default) | x.x.x.x

The gateway must be within the network.

To indicate that a gateway is not being used, enter 0.0.0.0 (the default). The address
255.255.255.255 is an invalid gateway IP address.

Programmatic Use
Block Parameter: Gateway

PCI bus — PCI bus number of Ethernet card
0 (default) | integer

Enter the PCI bus number for the Ethernet card.

Programmatic Use
Block Parameter: PCIBus

PCI slot — PCI slot number of Ethernet card
0 (default) | integer

Enter the PCI slot number for the Ethernet card.

Programmatic Use
Block Parameter: PciSlot

PCI function — PCI function number of Ethernet card
0 (default) | integer

Enter the PCI function number for the Ethernet card.

25 XCP Blocks

25-16

Programmatic Use
Block Parameter: PciFunction

Sample time — Sample time of block
.01 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means sample time
is inherited.

Programmatic Use
Block Parameter: SampleTime

Disable CTR error detection — Display error detection schemes
on (default) | off

When selected (on), the CTR error detection selections are hidden.

Programmatic Use
Block Parameter: EthDriver

Error detection scheme — Select a CTR error detection scheme
'One counter for all CTOs and DTOs' | 'Separate counters for
(RES,ERR,EV,SERV) and (DAQ)' | 'Separate counters for (RES,ERR),
(EV,SERV), and (DAQ)'

When Disable CTR error detection is off, use Error detection scheme to select a
CTR detection scheme.

Programmatic Use
Block Parameter: headerErrDet

See Also
XCP Configuration | XCP Data Acquisition | XCP Data Stimulation

External Websites
www.asam.net

Introduced in R2014a

 XCP UDP Transport Layer

25-17

https://www.asam.net

Speedgoat

19

Speedgoat Support

26

Speedgoat Target Computers and Support
Speedgoat target computers are real-time computers fitted with a set of I/O hardware,
Simulink programmable FPGAs, and communication protocol support. Speedgoat target
computers are optimized for use with Simulink Real-Time and fully support the HDL
Coder™ workflow.

Speedgoat real-time target machines include:

• Performance — Highest performance, cost-effective real-time system for office or lab.
Supports up to 50 I/O modules.

• Mobile — Compact, rugged, fanless, and expandable real-time system. For mobile and
in-vehicle use, and for use in confined areas. Provides extended operating
temperature. Supports up to 14 I/O modules.

• Baseline — Small, rugged, and fanless real-time system. For mobile, in-vehicle, and
classroom use, and for use in confined areas. Special pricing for academia available.
Provides extended operating temperature. Supports up to 7 I/O modules

• Audio — Real-time system optimized for audio applications, such as hearing aids and
car acoustics.

When you install the Speedgoat block library, the installer sets up help for the blocks in
the MATLAB Help browser. To view the block library documentation, open the Help
browser and navigate to the home page. At the bottom right of the home page, under
Supplemental Software, click Simulink Real-Time - Speedgoat Library. The help
opens in the current window.

To install your Speedgoat library, navigate on the Internet to www.speedgoat.com/
login, the Speedgoat Customer Portal. Follow the directions to download and install your
library.

You can find Speedgoat real-time target machine configuration documentation online
here:

www.speedgoat.com/help

You can find Speedgoat real-time target machine product information online here:

www.speedgoat.com/products

26 Speedgoat Support

26-2

matlab: helpview(fullfile(matlabroot,'toolbox','rtw','targets','xpc','target','build','xpcblocks','thirdpartydrivers','sg_help','html','index.html'));
https://www.speedgoat.com/login
https://www.speedgoat.com/login
https://www.speedgoat.com/help
https://www.speedgoat.com/products

Speedgoat I/O Hardware
Speedgoat provides a wide range of I/O hardware with ready-to-use configurations that
include I/O emulation products typically used with hardware-in-the-loop (HIL)
simulations. Speedgoat I/O connectivity includes support for:

• Analog I/O: A/D, D/A, single or differential, with or without isolation, 16–24 bit, both
voltage and current

• Digital I/O: LVCMOS, TTL, RS-422, RS-485, LVDS
• FPGA code modules for:

• Interrupts
• PWM generation and capture, pulse patterns
• Quadrature decoding and encoding (measurement and simulation)
• SSI master, slave, and sniffer (measurement and simulation)
• SSI2 master, slave, and sniffer (measurement and simulation)
• EnDat 2.2 decoder, encoder, and sniffer (measurement and simulation)
• BiSS decoder, encoder, and sniffer (measurement and simulation)
• SPI master, slave, and sniffer
• I²C master and slave
• Cam and crank decoder and simulator (measurement and simulation)
• UART (RS-485/RS-422)
• Aurora 64B/66B master and slave

• LVDT/RVDT and synchro/resolver (measurement and simulation)
• Serial:

• RS-232, RS-422, RS-485
• SDLC, HDLC

• Shared memory
• Thermocouple, RTD, and strain gauge (measurement and simulation)
• Vibration measurements (IEPE/ICP transducers)
• Programmable resistors and potentiometers
• SPDT, SPST, and DPST reed relays

 Speedgoat Target Computers and Support

26-3

• Fault insertion

Speedgoat Communication Protocols
Speedgoat provides communication protocol support for I/O hardware with ready-to-use
configurations. Speedgoat communication protocols include:

• CAN, CAN FD, LIN, SAE J1939, and FlexRay™
• XCP over Ethernet, XCP over CAN
• MIL-STD-1553, ARINC-429, ARINC-629, AFDX (ARINC 664 Pt7)
• EtherCAT master and EtherCAT slave
• Real-time UDP, Real-time raw Ethernet, TCP/IP
• EtherNet/IP™ Scanner (master) and EtherNet/IP Adapter (slave)
• PROFINET master and PROFINET slave
• PROFIBUS, Modbus TCP, Modbus RTU, POWERLINK
• Timing and synchronization: PTP (Precision Time Protocol, IEEE 1588), GPS, IRIG
• UART (RS-232, RS-422, RS-485)
• I2C, SPI, SSI, SSI2, EnDAT 2.2, BiSS
• Camera Link and UVC-compliant USB video cameras (webcams)
• Aurora 64B/66B multigigabit links for FPGA

See Also

External Websites
• www.speedgoat.com/help
• www.speedgoat.com/products
• www.speedgoat.com

26 Speedgoat Support

26-4

https://www.speedgoat.com/help
https://www.speedgoat.com/products
https://www.speedgoat.com

UEI, Asynchronous Events

5

Asynchronous Events

27

Asynchronous Event Support
In this section...
“Adding an Asynchronous Event” on page 27-2
“Asynchronous Interrupt Example” on page 27-4

Adding an Asynchronous Event
The Simulink Real-Time software includes support for asynchronous events in response to
an interrupt from I/O boards. In response to these interrupts, the CPU can suspend
normal execution and jump to another section of code called an Interrupt Service routine
(ISR).

When developing an Simulink Real-Time model, you can model an Interrupt Server
Routine (ISR) by using a Function-Call Subsystem. Also, add an IRQ Source block
connected to the Function-Call Subsystem block. This subsystem is then executed when
an interrupt occurs and the CPU is ready to accept it.

After you install an I/O board with interrupt support into your target computer, you can
add Simulink Real-Time asynchronous blocks to your Simulink model.

1 In the MATLAB Command Window, type

slrtlib

The Simulink Real-Time Library opens.
2 Double-click the Asynchronous Event group block.

The Library: slrtlib/Asynchronous Event window opens.
3 Drag the Simulink Real-Time IRQ block into your Simulink model and connect the

output to this block to the input of a Function-Call Subsystem. For more information
on Function-Call subsystems, see the Simulink and Simulink Coder documentation.

27 Asynchronous Events

27-2

In the setup shown above, the CPU executes the contents of the Function Call-
Subsystem whenever IRQ 5 occurs.

4 Double-click the IRQ Source block.

The Block Parameters: IRQ Source dialog box opens.
5 To determine and use the IRQ that the BIOS assigned to the board, from the IRQ line

number list, select Auto (PCI only).

Alternatively, select one of the values 3–15 for this number. To determine the
available IRQ line numbers on the target computer, use the function
SimulinkRealTime.target.getPCIInfo.

6 From the I/O board generating the interrupt drop-down list, select an interrupt
board.

7 In the PCI slot (-1: autosearch) or ISA base address field, enter the PCI slot
number or enter -1 to let the Simulink Real-Time software determine the number.

8 Click OK.

For more information about the IRQ Source block, see Async IRQ Source.

To transfer data from your ISR, add an Async Transition block or Async Read/Write block
to your Simulink model. See Async Rate Transition, Async Buffer Write and Read, and
“Asynchronous Interrupt Example” on page 27-4.

If you are using a CAN field bus with interrupts, see “Asynchronous Interrupt Example”
on page 27-4.

 Asynchronous Event Support

27-3

Asynchronous Interrupt Example
The xpcasynctrans model uses an external TTL signal to trigger an interrupt on the
parallel port. Data is exchanged between an asynchronous task and a rate monotonic task
by using an Async Rate Transition block. For more information, see the annotations in the
model that document its purpose.

If you installed the MATLAB software in the default location, the example model is located
in this folder:

C:\MATLAB\toolbox\rtw\targets\xpc\xpcdemos

27 Asynchronous Events

27-4

Asynchronous Event: Blocks

This topic describes the Target Management library and Displays and Logging library
blocks:

28

Async Buffer Write and Read
Async Buffer Write and Read blocks

Library
Simulink Real-Time Library for Asynchronous Event

Description
These blocks provide double buffering of data between the ISR and the model which
executes rate-monotonically in real time. Use these blocks in pairs with an Async Buffer
Write Block leading into an Async Buffer Read block. The Async Buffer Write Block has to
be part of the ISR, and the Async Buffer Read block is outside the ISR.

Unlike the rate transition block, Async Buffer Write and Read blocks do not copy data
from one buffer to another. Instead, the software disables interrupts and swaps buffer
pointers. This method disables interrupts for a shorter time than the rate transition block
and protects against data corruption caused by overwriting partially copied buffers.

Block Parameters
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

28 Asynchronous Event: Blocks

28-2

See Also

Topics
“Asynchronous Event Support” on page 27-2

Introduced before R2006a

 Async Buffer Write and Read

28-3

Async IRQ Source
Async IRQ Source block

Library
Simulink Real-Time Library for Asynchronous Event

Description
The IRQ Source block configures the Simulink and Simulink Real-Time software to treat a
particular Function-Call Subsystem as an Interrupt Service Routine (ISR). This block is
actually a virtual block and does not exist at model execution time. However, the model
initialization code sets up the CPU to execute the ISR when the specified interrupt occurs.

Block Parameters
IRQ line number

Select Auto (PCI only) to enable the Simulink Real-Time software to automatically
determine the IRQ that the BIOS assigned to the board and use it.

Alternatively, select the IRQ line number you are using for this block. This depends on
the characteristics of your I/O module. You may need to query the PCI bus in the
target computer to find what IRQ the PCI bus assigned to your I/O module. Use the
function SimulinkRealTime.target.getPCIInfo.

Valid IRQ numbers are between 3 and 15.

28 Asynchronous Event: Blocks

28-4

I/O board generating the interrupt
For many I/O boards, you need to set up the board to generate the interrupt. You
might also need to set up board specific features at the beginning and/or end of an
ISR. Select the board you intend to use from the drop-down list.

PCI slot (-1: autosearch) or ISA base address

• If PCI:

If only one board of this type is in the target computer, enter -1 to automatically
locate the board.

If two or more boards of this type are in the target computer, enter the bus
number and the PCI slot number of the board associated with this driver block.
Use the format [BusNumber, SlotNumber]. To determine the bus number and the
PCI slot number, type:

tg = slrt;
getPCIInfo(tg, 'installed')

• If ISA, enter the base address.

See Also

Topics
“Asynchronous Event Support” on page 27-2

Introduced before R2006a

 Async IRQ Source

28-5

Async Rate Transition
Async Rate Transition block

Library
Simulink Real-Time Library for Asynchronous Event

Description
Use the Asynchronous Rate Transition block to double buffer data between the function
call subsystem and the rest of the model, which executes rate-monotonically in real time.

Normally, the interrupt service routine writes to the first buffer. When the next model step
executes, the first buffer is copied to the second buffer and its value is used for model
calculations.

If a second interrupt occurs while the buffer is being copied, data is corrupted. The CPU
copies part of the data from the first buffer. When the second interrupt occurs, it writes
over the entire first buffer. When the CPU returns from the second interrupt, it continues
the copy operation from the first buffer, which contains data written during the second
interrupt.

To prevent data corruption, use Async Buffer Write and Read blocks.

Block Parameters
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

28 Asynchronous Event: Blocks

28-6

See Also

Topics
“Asynchronous Event Support” on page 27-2

Introduced before R2006a

 Async Rate Transition

28-7

Logitech

9

Logitech Blocks

The Simulink Real-Time Logitech blocks support Logitech G29 Steering Wheel functions.

29

Logitech G29 Steering Wheel
Receive Logitech G29 Steering Wheel Read data
Library: Simulink Real-Time / Logitech G29

Description
The Logitech G29 Steering Wheel block reads data from a Logitech G29 Steering Wheel
(PS3 only). The block does not support a Stick Shift module.

Ports

Output
Buttons — status of steering wheel buttons
0 (= unpressed) | 1 (= pressed)

The Buttons output is a vector of boolean values that indicate the status of buttons on
the steering wheel. The order of the button values in the vector is:

1 Square
2 X
3 Circle
4 Triangle
5 LPaddle
6 RPaddle
7 L2
8 R2
9 L3

29 Logitech Blocks

29-2

10 R3
11 Share
12 Option
13 PS

Data Types: Boolean

Steering — value of steering wheel position
0 (= left most) | 65535 (= right most)

The Steering output value indicates the position of the steering wheel.
Data Types: uint16

Pedals — status of throttle, brake, and clutch pedals
0 (= not engaged) | 255 (= fully engaged)

The Pedals output is a vector of values that indicate the status of the throttle, brake, and
clutch pedals. The order of the pedal values in the vector is:

1 Throttle
2 Brake
3 Clutch

Data Types: uint8

Direction — status of direction pad buttons on steering wheel
0 (= UP) | 2 (= RIGHT) | 4 (= DOWN) | 6 (= LEFT) | 8 (= UNPRESSED)

The Direction output value indicates a button press on the direction pad. Intermediate
values occur when the direction pad is pressed in between the pad buttons.
Data Types: uint8

Status — status of communications with steering wheel
0 (default) | negative value

The Status output value indicates successful communications with the steering wheel (0)
or unsuccessful communications (negative value).
Data Types: uint32

 Logitech G29 Steering Wheel

29-3

Parameters
sampleTime — select sample time for steering wheel data
-1 (inherited) (default)

The sampleTime selects the sample time for steering wheel data in milliseconds. The
minimum sampleTime for block is 1ms. The recommended sampleTime is 2ms.

Programmatic Use
Block Parameter: sampleTime

See Also

External Websites
Logitech G29 Driving Force Racing Wheel

Introduced in R2018b

29 Logitech Blocks

29-4

https://www.logitechg.com/en-us/product/g29-driving-force

Utility Drivers, Target
Management, Displays and

Logging

5

Utility Blocks

The Simulink Real-Time utility blocks support utility functions. Some of these blocks exist
in the Utilities library, available at the top level of the Simulink Real-Time Block Library.
Others are available as sublibraries of the I/O function they support.

30

Bit Packing
Construct data frames

Library
Simulink Real-Time Library for Utilities

Description
This block constructs data frames. Its output port is typically connected to an input port
of a Send block or Digital Output block. The block has one output port. This port can be a
vector of arbitrary size; it represents the data frame entity constructed by the signals
entering the block at its input ports. The number of input ports depends on the setting in
the block dialog box.

Block Parameters
Bit Patterns

Specify bit patterns. The data type entered in the control must be a MATLAB cell
array vector. The number of elements in the cell array define the number of input
ports shown by this block instance. The cell array elements must be of type double
array and define the position of each bit of the incoming value (data typed input port)
in the outgoing double value (data frame). From a data type perspective (input ports),
the block behaves like a Simulink Sink block, and therefore the data types of the input
ports are inherited from the driving blocks.

Output port (packed) data type
From the list, select an output port (packed) data type.

30 Utility Blocks

30-2

• double
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Output port (packed) dimensions
Specify the dimensions the output port (packed). Enter this as a vector. Specify the
size of the port using a format compatible with the MATLAB size command.

See Also
Bit Unpacking

Introduced in R2006a

 Bit Packing

30-3

Bit Unpacking
Deconstruct data frames

Library
Simulink Real-Time Library for Utilities

Description
This block is used to extract data frames. Its input port is typically connected to an output
port of a Receive block or Digital Input block.

The block has one input port, which represents the data frame entity from which the
signals are extracted and leaving the block at its output ports. The number of output
ports and the data type of each output port depend on the settings in the block dialog
box.

Block Parameters
Bit Patterns

Specify bit patterns. The data type must be a MATLAB cell array vector. The number
of elements in the cell array define the number of input ports shown by this block
instance. The cell array elements must be of type double array and define the position
of each bit of the incoming value (data typed input port) in the outgoing double value
(data frame). From a data type perspective, the block behaves like a Sink block. The
Input port (packed) data types specify the data type of the input port.

Input port (packed) data types
From the list, select an input port (packed) data type.

30 Utility Blocks

30-4

• double
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Input port (packed) dimension
Specify the dimensions of the input port (packed). Enter this as a vector. Specify the
size of the port using a format compatible with the MATLAB size command.

Output port (unpacked) data types (cell array)
The output ports (packed) can be of arbitrary data type. The number of elements in
the cell array define the number of output ports shown by this block instance. The
data types can be

• double
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Output port (unpacked) dimension (cell array)
Specify the dimensions of each output port (unpacked). Enter this as a cell array of
vector sizes.

Sign extend
Select this check box to enable sign extension. If you select this check box and
unpack the data frame into a signed type (int8, int16, or int32), the block

 Bit Unpacking

30-5

performs sign extension. For example, if the bit pattern is [0:4], and the data type is
int8, you are extracting 5 bits into an 8-bit wide signed type. In this case, bits 5, 6,
and 7 are the same as bit 4, resulting in sign extension. This functionality enables you
to pack and unpack negative numbers without losing precision.

See Also
Bit Packing

Introduced in R2006a

30 Utility Blocks

30-6

Byte Packing
Construct data frames
Library: Simulink Real-Time / Utilities

Description
The Byte Packing block converts one or more signals of user-selectable data types to a
single vector of varying data types. The output of this block typically connects to an input
port of a Send block.

For example, suppose that you are packing three signals into a vector of uint8. The
signals have the following attributes:

Dimension Size Type
Scalar 1 single
Vector 3 uint8
Vector 3 uint8

1 Set the packed output port data type to uint8.
2 Set the input port data type to a cell array encoding the data types:

{'single', ['uint8'], ['uint8']}

Use square brackets to represent vectors.
3 Set the byte alignment value to 1.
4 Connect the signals to the Byte Packing block.

 Byte Packing

30-7

Input/Output Ports

Input
Port_1 — First of N input ports
scalar | vector

The block has from 1 to N input ports. Specify the number of input ports and their types
by entering them as a cell array in the parameter Input port (unpacked) data types
(cell array).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Output
Port_1 — Output port containing packed data
vector

The block displays one output port that transmits a vector of packed data. You determine
the data type of the packed data by setting Output port (packed) data type.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32 |
Boolean

Parameters
Output port (packed) data type — Data type for the packed output signal
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select a data type for the output port.

Programmatic Use
Block Parameter: MaskPackedDataType

Input port (unpacked) data types (cell array) — Data types for the
unpacked input signals
{'uint8'} (default) | double | single | int8 | int16 | uint16 | int32 | uint32 |
boolean

30 Utility Blocks

30-8

Specify as a cell array the data types of the input ports (unpacked) for the different input
signals. The number of elements in the cell array determines the number of input ports
shown by this block instance. To represent vector elements, use square brackets in the
cell array.

Programmatic Use
Block Parameter: MaskUnpackedDataTypes

Byte Alignment — Alignment of the input signal data types after packing
1 (default) | 2 | 4 | 8

Each element in the input signals list starts at a multiple of the alignment value, specified
from the start of the vector. If the alignment value is larger than the size of the data type
in bytes, the block fills the space with pad bytes of value 0.

For example, if the alignment value is 4:

• uint32 receives no padding
• uint16 receives 2 bytes of padding
• uint8 receives 3 bytes of padding

If the model accesses the data items frequently, consider selecting an alignment value
equal to the largest data type that you want to access. If the model transfers data items
frequently as a group, consider an alignment value of 1, which packs the data into as
small a space as possible.

Programmatic Use
Block Parameter: MaskAlignment

See Also
Byte Unpacking

Introduced in R2006a

 Byte Packing

30-9

Byte Reversal/Change Endianess
Reverse little-endian data for big-endian processor

Library
Simulink Real-Time Library for Utilities

Description
You use the Byte Reversal/Change Endianess block for communication between a
Simulink Real-Time system and a system running with a processor that is big-endian.
Processors compatible with the Intel 80x86 family are little-endian. For this situation,
insert a Byte Reversal/Change Endianess block before the Pack block and another just
after the Unpack block. The following is the Change Endianess block.

Block Parameters for Change Endianess
Number of input ports

The number of input ports adjusts automatically to follow this parameter, and the
number of outputs is equal to the number of inputs.

Machine word length
Select one of the following machine word lengths to which to convert the data:

• Byte
• Word
• Double Word

30 Utility Blocks

30-10

The following is the Byte Reversal block.

Byte Reversal Block Parameters
Number of inputs

The number of input ports adjusts automatically to follow this parameter, and the
number of outputs is equal to the number of inputs.

Introduced in R2006a

 Byte Reversal/Change Endianess

30-11

Byte Unpacking
Deconstruct data frames
Library: Simulink Real-Time / Utilities

Description
This block converts a vector of varying data types into one or more signals of user-
selectable data types. The input of this block typically connects to an output port of a
Receive block.

For example, suppose that you are unpacking a uint8 vector signal into three signals.
The signals have the following attributes:

Dimension Size Type
Scalar 1 single
Vector 3 uint8
Vector 3 uint8

1 Set the output port data type to:

{'single', ['uint8'], ['uint8']}

Use square brackets to represent vectors.
2 Set the output port dimension to:

{[1],[3],[3]}
3 Set the alignment value to 1.
4 Connect the output signals to the Byte Unpacking block.

30 Utility Blocks

30-12

Input/Output Ports

Input
Port_1 — Input port containing packed data
vector

The block displays one input port that receives a vector of packed data. The source of the
packed data determines by inheritance the data type of the packed data.
Data Types: single | double | int8 | uint8 | int16 | uint16 | int32 | uint32 |
Boolean

Output
Port_1 — First of N output ports
scalar | vector

The block displays from 1 to N output ports, as specified by elements of the cell array in
the parameter Output port (unpacked) data types (cell array).
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 |
Boolean

Parameters
Output port (unpacked) data types (cell array) — Data types for the
unpacked output signals
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Specify as a cell array the data types of the output ports (unpacked) for the different
output signals. The number of elements in the cell array determines the number of output
ports shown by this block instance. To represent vector elements, use square brackets in
the cell array.

Programmatic Use
Block Parameter: MaskUnpackedDataTypes

 Byte Unpacking

30-13

Output port (unpacked) dimensions (cell array) — Dimensions of each
output port (unpacked)
{[1]} (default) | {[N], [M], ...}

Specify the dimensions of the output ports as a cell array of vectors.

Programmatic Use
Block Parameter: MaskUnpackedDataSizes

Byte Alignment — Alignment of the output signal data types before unpacking
1 (default) | 2 | 4 | 8

Each element in the output signals list starts at a multiple of the alignment value,
specified from the start of the input vector. If the alignment value is larger than the size of
the data type in bytes, the vector contains pad bytes of value 0.

For example, if the alignment value is 4:

• uint32 receives no padding
• uint16 receives 2 bytes of padding
• uint8 receives 3 bytes of padding

Programmatic Use
Block Parameter: MaskAlignment

See Also
Byte Packing

Introduced in R2006a

30 Utility Blocks

30-14

Shared Memory Pack
Shared memory pack

Library
Simulink Real-Time Library for Shared Memory

Description
This block packs the specified partition structure into an unstructured double word array
vector. It converts one or more Simulink signals of varying data types into the vector.
Typically, the input to a pack block is the output from a write block. The Simulink
interface is not aware of structures; pass the output of each structure segment as input to
the Shared Memory Pack block.

Memory partitions consist of groups of Simulink signals, which are combined into blocks
(packets) of 32-bit words. Before you begin to configure this block, be sure that you have
a predefined shared memory partition structure as required by the shared memory
manufacturer.

This block ignores the Address field of the partition structure.

Block Parameters
Partition struct

Enter the name of the predefined shared memory partition structure.

 Shared Memory Pack

30-15

See Also
Shared Memory Unpack

Introduced in R2006a

30 Utility Blocks

30-16

Shared Memory Unpack
Shared memory unpacking

Library
Simulink Real-Time Library for Shared Memory

Description
This block unpacks an unstructured double word array vector (from the Shared Memory
Pack block) into the specified partition structure.

Before you begin to configure this block, be sure that you have a predefined shared
memory partition structure as required by the shared memory manufacturer.

This block ignores the Address field of the partition structure.

Block Parameters
Partition struct

Enter the name of the predefined shared memory partition structure. The block
unpacks the double word array vector into this structure.

See Also
Shared Memory Pack

 Shared Memory Unpack

30-17

Introduced in R2006a

30 Utility Blocks

30-18

Target Management, Display, and
Logging Blocks

31

CPU Temperature
Return current CPU temperature in Celsius
Library: Simulink Real-Time / Target Management / Target

Information

Description
This block outputs the CPU temperature. You can monitor this value and halt real-time
execution when the temperature reaches a value that depends on the temperature range
of the target computer.

Ports

Output
Port_1 — CPU temperature
scalar

Outputs the CPU temperature in Celsius with granularity of 1 °C.
Data Types: double

Parameters
Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: SampleTime

31 Target Management, Display, and Logging Blocks

31-2

See Also
Introduced in R2017a

 CPU Temperature

31-3

Current Available Stack Size
Current Available Stack Size returns free stack available

Library
Simulink Real-Time Library for Execution Parameters

Description
This block outputs the number of bytes of stack memory currently available to the real-
time application thread.

See Also
Minimum Available Stack Size

Introduced in R2014a

31 Target Management, Display, and Logging Blocks

31-4

Elapsed Time
Read target computer time
Library: Simulink Real-Time / Target Management / Target

Information

Description
The Elapsed Time block outputs in an internal format the elapsed time since the last
restart of the target computer.

To compute the difference in nanoseconds between two vector time values, pass both time
values to the Time Stamp Delta block. To convert a single time value to nanoseconds, pass
one time value to a Time Stamp Delta block and ground the other input.

Ports

Input
D — Sort block order
scalar

Dynamically typed, for use in establishing the block execution order. The block does not
use the port value.
Data Types: double

Output
T — Target computer time
[00000000 FFFFFFFF]

The time value is in an internal format. To convert it to nanoseconds, use the Time Stamp
Delta block.

 Elapsed Time

31-5

Data Types: [uint32 uint32]

Parameters
Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample
time is inherited.

Programmatic Use
Block Parameter: ts

See Also
Time Stamp Delta

Introduced in R2017b

31 Target Management, Display, and Logging Blocks

31-6

Enable Profiler
Start and stop profiler on target computer
Library: Simulink Real-Time / Displays and Logging

Description
A rising edge on Start starts the profiler. A rising edge on Stop stops the profiler. A
rising edge on both ports does nothing.

Ports
Input
Start — Starts the profiler
0 | 1

When the Start input changes from 0 to 1, the block starts the profiler.

The profiler starts collecting data after the resources required to collect the data become
available in the background. Profiler preparation can span several time steps.
Data Types: Boolean

Stop — Stops the profiler
0 | 1

When the Stop input changes from 0 to 1, the block stops the profiler.

If the profiler is still running when the application stops, the profiler stops by itself. You
do not have to trigger the Stop input.

The amount of data collected is limited to 1GB. The profiler stops by itself when it reaches
this limit.

 Enable Profiler

31-7

Data Types: Boolean

See Also
Profiler Data | SimulinkRealTime.target.getProfilerData |
SimulinkRealTime.target.resetProfiler | SimulinkRealTime.‐
target.startProfiler | SimulinkRealTime.target.stopProfiler

Introduced in R2017b

31 Target Management, Display, and Logging Blocks

31-8

From File
Read data from file on target computer

Library
Simulink Real-Time Library for Target Management

Description
The From File block reads data from a file on the target computer hard disk and outputs
that data in chunks every sample time. As the Simulink Real-Time kernel on the target
computer reads the file data, it writes that data into a software buffer whose size is user-
defined. The From File block then reads the data from this buffer and propagates it to the
block outputs for use by the real-time application. For example, use the From File block to
drive a model with externally acquired data (data from a file).

The From File block distributes the data as a sequence of bytes. To use these data bytes
as input to a model, convert the data into one or more signals. To do so, use the Byte
Unpacking block. This block outputs data in various Simulink data types. For example,
assume that data in your file represents a single precision scalar and a double precision
vector of width 3. To convert data of this type, set up the block to output every sample
time:

28 bytes (1 * sizeof('single') + 3 * sizeof('double'))

This data can then be converted into signal values by the Byte Unpacking block.

See the following topics:

• “File Format” on page 31-10 — Describes the target computer source file format
• “Block Parameters” on page 31-11 — Describes the block parameters for the From

File block

 From File

31-9

File Format
Before you use a target computer file as the source for the From File block, format the
data in the file. The file format is a concatenation of the different data elements for one
time step, followed by the next time step, and so on.

For example, assume that your file contains the data from the preceding example. Assign
a variable to each component, for example,

• a — single precision value
• b — double precision vector of 3

Assume, also, that there are N time steps worth of data. The array dimension for a and b
are then

• size(a) — [1, N]
• size(b) — [3, N]

In sequence, write out the data like the following to create the file.

a(1, 1) 4 bytes
b(:, 1) 24 bytes
a(1, 2) 4 bytes
b(:, 2) 24 bytes
...
...
a(1, N) 4 bytes
b(:, N) 24 bytes

If you already have the data as MATLAB variables, use the
SimulinkRealTime.utils.bytes2file function to create the file on the development
computer. This function has the following syntax:

SimulinkRealTime.utils.bytes2file(filename, var1, ... varn)

where

• filename — Specify the name of the data file from which the From File block
distributes data

• var1, ... varn — Specify the column of data to be output to the model.

31 Target Management, Display, and Logging Blocks

31-10

You can then use SimulinkRealTime.copyFileToTarget to download the file to the
target computer.

Block Parameters
Filename

Enter the name of the target computer file that contains the data.
Output port width

Enter the size, in bytes, of the data to be distributed each sample time.
Buffer size

Enter the size of the software FIFO, in bytes. The Simulink Real-Time kernel fills this
FIFO with the data to be input to the model. The From File block empties this FIFO as
it inputs the data to the model.

This parameter should ideally be

• Much larger than Output port width
• At least several time the disk read size

Increasing this parameter value helps prevent the real-time application from
emptying the buffer faster than the background task can fill it. This can happen if
you have multitasking models or conditionally executed subsystems, which can
cause temporary increases in task execution time and leave less time for the
background task to fill the buffer.

Disk read size
Enter the number of bytes to read to fill the buffer.

To understand this parameter, assume the following default values:

• Buffer size is 2000
• Disk read size is 512
• Output port width is 8

This means that the data buffer is of size 2000.

This buffer is initially full. Each time the block executes, eight bytes are output to the
model, and the number of bytes in the buffer decreases by eight. Each time the

 From File

31-11

number of free bytes in the buffer goes to 512 or higher, the Simulink Real-Time
kernel attempts to read 512 bytes from the Simulink Real-Time data file to fill the
buffer.

Setting this parameter to another value, for example 1024, causes the From File block
to wait until 1024 bytes are free before attempting the next read.

For efficiency, set this value to a multiple of 512 (a disk sector is 512 bytes).
When reaching EOF

Select the behavior of the block for when you run the real-time application beyond
when you have data in the file. Select

• Hold last output — Stops reading and stops the output at the last value
• Seek to beginning — Returns to the beginning of the file and starts reading

the data (this option results in periodic data)

Sample time
Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

Show IsValid port
Select the Show IsValid port check box to make the port IsValid visible in the model.
Port IsValid outputs 1 if the file read succeeds and 0 if it fails.

Introduced before R2006a

31 Target Management, Display, and Logging Blocks

31-12

From Target
Read data from target computer

Library
Simulink Real-Time Library for Displays and Logging

Description
This block behaves like a source. Its output is connected to the input of a display device.

You can use the function SimulinkRealTime.utils.createInstrumentationModel
to create an instrumentation model using the From Target and To Target blocks.

The From Target block runs as a non-real-time Simulink block on the development
computer. It is asynchronous to the real-time application running on the target computer.
If the real-time application has a sample time slower than the non-real-time model, the
From Target block can query the target computer more than once. The target computer
returns the same value in this case. Conversely, it is possible for the From Target block to
miss some sample times between two successively returned values.

Note The use of From Target blocks requires a connection between the development and
target computers. Without a connection, operations such as opening a model or copying
these blocks take longer than normal.

Some notes on the From Target block behavior:

• To highlight a signal line that a From Target block refers to, double-click the From
Target block.

 From Target

31-13

• If the From Target block has not yet been configured, double-clicking the From Target
block does nothing.

• To edit the From Target block parameters, right-click the block and select Mask
Parameters.

Block Parameters
Target application name

The function SimulinkRealTime.utils.createInstrumentationModel
automatically enters a name entry for this parameter. It is the same name as the
Simulink model that the Simulink Real-Time software uses to build the real-time
application.

Signal name (block name)
The function SimulinkRealTime.utils.createInstrumentationModel
automatically enters a name entry for this parameter. For multiple blocks, the
function creates a From Target block for each block. Using this method of specifying
signals returns signal values one per time step.

You can also manually enter a cell array of signals for this parameter. Using this
method of specifying signals returns the values of a vector of signals (up to 1000) as
fast as it can acquire them. The signal values may not be at the same time step and
the signal values are more likely to be spaced closely together.

Observer sample time
The function SimulinkRealTime.utils.createInstrumentationModel
automatically enters the sample time for the Simulink block with this signal. It can be
equal to the model base sample time or a multiple of the base sample time.

Use default target PC
Selecting this option directs Simulink Coder to build and download the real-time
application to the default target computer. This assumes that you configured a default
target computer through the Simulink Real-Time Explorer (see “PCI Bus Ethernet
Setup” if you have not). By default, this check box is selected.

Specify target name
If you deselect the Use default target PC check box, this field is displayed. Enter the
name of the configured target computer.

31 Target Management, Display, and Logging Blocks

31-14

See Also
SimulinkRealTime.utils.createInstrumentationModel

Topics
“Creating a Custom Graphical Interface”

Introduced in R2014a

 From Target

31-15

Get Overload Counter
Get Overload Counter returns number of CPU overloads

Library
Simulink Real-Time Library for Execution Parameters

Description
This block returns the CPU overload count. To display the value, connect the block output
to a real-time Scope block. To achieve your required refresh rate, adjust the Simulink
Real-Time Scope block parameter Number of samples to a small number, such as 10.

For multirate models in multitasking mode, Get Overload Counter returns the number of
overloads of the base rate task.

Block Parameters
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also
Set Overload Counter

“CPU Overload Options”

31 Target Management, Display, and Logging Blocks

31-16

Introduced in R2014a

 Get Overload Counter

31-17

Minimum Available Stack Size
Get the smallest amount of free stack available

Library
Simulink Real-Time Library for Execution Parameters

Description
This block outputs the number of bytes that have not been used in the stack since the
thread was created.

Note The block traverses the entire stack to find unused bytes. Use this block only for
diagnostic purposes.

See Also
Current Available Stack Size

Introduced in R2014a

31 Target Management, Display, and Logging Blocks

31-18

Scope
Real-time Scope block
Library: Simulink Real-Time / Displays and Logging

Description
The real-time Scope block acquires data in chunks of size Number of samples from the
real-time application that is executing on the target computer.

You can configure real-time scope blocks for three types: Target, Host, and File. The
target scope displays data on the target computer screen. The host scope transmits data
to the development computer for processing and display. The file scope writes data to a
file on the target computer.

The block dialog box changes depending on the setting for parameter Scope type. By
default, the block dialog box displays the parameters for Target scopes.

In some situations, an output signal of a block is not observable by the Scope block. You
can make the signal observable by adding test points, by adding unit Gain blocks, or by
turning off the Signal storage reuse or Block reduction configuration parameters. For
more information, see “Troubleshoot Signals Not Accessible by Name”.

The real-time application can generate data faster than the kernel can process it.
Previous data can be overwritten, causing gaps. If gaps occur in the data, consider
increasing the value of the Decimation property of the scope.

 Scope

31-19

Ports

Input
Signal — Input signal that scope displays
numeric

Time-varying numeric value, which can be of any type that Simulink Real-Time supports.

Trigger signal — Trigger signal to scope
numeric

Time-varying numeric value, which can be of any type that Simulink Real-Time supports.

Dependency

This input becomes visible when you set Trigger mode to Signal triggering and set
the Add signal port to connect a signal trigger source parameter.

Parameters
• “Common and Host Scope Parameters” on page 31-20
• “Target Scope Parameters” on page 31-25
• “File Scope Parameters” on page 31-27

Common and Host Scope Parameters
Host scopes require only the common scope parameters.

Scope number — Unique number identifying scope
1 (default) | numerical

Contains a unique number to identify the scope that is displayed. This number is
incremented each time you add a Simulink Real-Time Scope block.

This number identifies the Simulink Real-Time Scope block and the scope display on the
development or target computer.

31 Target Management, Display, and Logging Blocks

31-20

Programmatic Use
Block Parameter: scopeno

Scope type — Location of scope output
Target (default) | Host | File

• Target — Output appears on the target computer screen
• Host — Output goes to the development computer. Usually, you display it with a host

scope display in Simulink Real-Time Explorer.
• File — Output goes to a file on the target computer. You can download the file to the

development computer for display or post processing.

Programmatic Use
Block Parameter: scopetype

Start scope when application starts — Starts scope with real-time
application
'on' (default) | 'off'

Select this check box to start a scope when you download and start the real-time
application. After it starts, the scope waits for a trigger. With a target scope, the scope
window opens automatically. With a host scope, you can open a host scope viewer window
from Simulink Real-Time Explorer.

Programmatic Use
Block Parameter: autostart

Number of samples — Number of values per data package
250 (default) | integer

Enter the number of values to be acquired in a data package. The minimum number is 3
samples.

Programmatic Use
Block Parameter: nosamples

Number of pre/post samples — Number of samples to save or skip
0 (default) | integer

Specify a value less than 0 to save this number of samples before a trigger event. Specify
a value greater than 0 to skip this number of samples after the trigger event before data
acquisition begins.

 Scope

31-21

Programmatic Use
Block Parameter: noprepostsamples

Decimation — Sample time interval at which to collect data
1 (default) | unsigned integer

Enter a value to collect data at each sample time (1) or to collect data at less than every
sample time (2 or greater).
Programmatic Use
Block Parameter: interleave

Trigger mode — Define trigger event
FreeRun (default) | Software triggering | Signal triggering | Scope
triggering

When a real-time scope is triggered, it acquires up to Number of samples of data from
the real-time application that is executing on the target computer.

• FreeRun — The scope acquires data continuously without waiting for a trigger.
• Software triggering — The scope triggers in response to a user action, such as

clicking the Trigger button () in Simulink Real-Time Explorer.
• Signal triggering — The scope triggers in response to a signal level crossing.

• In the Trigger signal box, enter the index of a signal previously added to the
scope.

(Alternatively) Click the Add signal port to connect a signal trigger source
check box, then connect an arbitrary trigger signal to the port Trigger signal. If the
Add signal port to connect a signal trigger source check box is selected,
parameter Trigger signal does not apply.

• In the Trigger level box, enter a value for the signal to cross before triggering.
• From the Trigger slope list, select one of Either, Rising, or Falling.

• Scope triggering — The scope triggers in response to the triggering of another
scope.

• In the Trigger scope number box, enter the scope number of a Scope block. If
you use this trigger mode, you must also add a second Scope block to your
Simulink model.

• If you want the scope to trigger on a specific sample of the other scope, enter a
value in the text box Sample to trigger on (-1 for end of acquisition). The

31 Target Management, Display, and Logging Blocks

31-22

default value of 0 indicates that the triggering scope starts at the same time as the
triggered (current) scope.

• Signal triggering — The scope block adds the Trigger signal, Add signal port
to connect signal trigger source, Trigger level, and Trigger slope parameters.

• Scope triggering — The scope block adds the Trigger scope number and
Sample to trigger on (-1 for end of acquisition) parameters.

Programmatic Use
Block Parameter: triggermode

Trigger signal — Index of signal on which to trigger scope
1 (default) | integer

Enter the signal index. To find the index number for a signal, in the Command Window,
type:

tg.ShowSignals = 'on'

.

This parameter does not apply if the Add signal port to connect a signal trigger
source check box is selected.

This parameter becomes visible when you set Trigger mode to Signal triggering.

Programmatic Use
Block Parameter: triggersignal

Add signal port to connect a signal trigger source — Adds trigger signal
port
'off' (default) | 'on'

Adds a port to the block to which you can connect a trigger signal. If you do not select
this parameter, the Signal port is the trigger port.

This parameter becomes visible when you set Trigger mode to Signal triggering.

When you select the Add signal port to connect a signal trigger source parameter,
output Trigger signal becomes visible.

Programmatic Use
Block Parameter: trigsignalfromport

 Scope

31-23

Trigger level — Value that triggers scope
0.0 (default) | numerical

The scope triggers when the value on the trigger signal passes through value Trigger
level in the direction given by Trigger slope.
Dependency

This parameter becomes visible when you set Trigger mode to Signal triggering.
Programmatic Use
Block Parameter: triggerlevel

Trigger slope — Direction of value change that triggers scope
Either (default) | Rising | Falling

The scope triggers when the value on the trigger signal passes through value Trigger
level in the direction given by Trigger slope.

This parameter becomes visible when you set Trigger mode to Signal triggering.
Programmatic Use
Block Parameter: triggerslope

Trigger scope number — ID number of scope on which to trigger
integer

Enter the scope ID. To find the ID number for a scope, double-click the scope block or, in
the Command Window, type:

tg.Scopes

This parameter becomes visible when you set Trigger mode to Scope triggering.
Programmatic Use
Block Parameter: triggerscope

Sample to trigger on (-1 for end of acquisition) — Offset into scope
acquisition at which to trigger
0 (default) | integer

Number of samples into the trigger scope acquisition on which to trigger this scope. If the
value is -1, trigger at the end of acquisition.

This parameter becomes visible when you set Trigger mode to Scope triggering.

31 Target Management, Display, and Logging Blocks

31-24

Programmatic Use
Block Parameter: triggersample

Target Scope Parameters
Target scopes require the common scope parameters and also the following parameters.

Scope mode — Display mode for target scope
Graphical redraw (default) | Numerical | Graphical rolling | Graphical
sliding

• Numerical — Displays the data numerically. The scope acquires Number of samples
values before updating the output.

• Graphical redraw — Displays a cycle of data continuously without scrolling
(refreshing the entire plot). The scope acquires Number of samples values before
redrawing the graph.

• Graphical rolling — Displays running data continuously scrolling from left to
right across the scope (similar behavior to oscilloscopes).

• Graphical sliding — The legacy value 'sliding' will be removed in a future
release. It behaves like value rolling.

If the scope mode is Numerical, the scope block adds a Numerical format text box to
the dialog box, set by default to %15.6f.

Programmatic Use
Block Parameter: viewmode

Numerical format — Define the display format for the data
'%15.6f' (default) | '[LabelN] [%width.precisiontype] [LabelX]'

Use this box to define the display format for the data.

• LabelN (optional) — Signal label. You can use a different label for each signal or the
same label for each signal.

• width (optional) — Minimum number of characters to offset from the left of the
screen or label.

• precision (optional) — Maximum number of decimal points for the signal value. For
a whole integer signal value, enter 0 for the precision value.

• type — Data type for the signal format, one of:

 Scope

31-25

Type Description
%e or %E Exponential format using e or E
%f Floating point
%g Signed value printed in f or e format depending on which is

smaller
%G Signed value printed in f or E format depending on which is

smaller
• LabelX (optional) — Second label for the signal. You can use a different label for each

signal or the same label for each signal.

You can have multiple Numerical format entries, separated by a comma. You can enter
as many format entries as you have signals for the scope. The entries apply to the signals
in order. If the format contains fewer label entries than signals, the default format
('%15.6f') applies to the remaining signals. If the format contains more entries than
signals, the unmatched entries are ignored.

Delimit each entry with a comma and surround the entire character vector with a pair of
quotes:

'Start1 %15.6f end1,Start2 %15.6f end2'

The default format is '%15.6f', a floating point format without a label.
Programmatic Use
Block Parameter: formatstr

Grid — Displays grid lines on the scope
'on' (default) | 'off'

Select this check box to display grid lines on the scope. This parameter is only applicable
for target scopes and scope modes of type Graphical redraw and Graphical
rolling.
Programmatic Use
Block Parameter: grid

Y-Axis limits — Define upper and lower limits of Y-axis
[0,0] (default) | [numeric, numeric]

Enter a row vector with two elements where the first element is the lower limit of the y-
axis and the second element is the upper limit. If you enter 0 for both elements, then the

31 Target Management, Display, and Logging Blocks

31-26

scaling is set to auto. This parameter only applies to target scopes that were set to the
scope modes Graphical redraw or Graphical rolling.

Programmatic Use
Block Parameter: ylimits

File Scope Parameters
File scopes require the common scope parameters and also the following parameters.

Filename — Name of file on target computer
C:\data.dat (default) | text

Enter a name for the file to contain the signal data. By default, the target computer writes
the signal data to a file named C:\data.dat.

If you select the Dynamic file name enabled and AutoRestart check boxes, configure
Filename to increment dynamically. Use a base file name, an underscore (_), and a < >
specifier. Within the specifier, enter one to eight % symbols. Each symbol % represents a
decimal location in the file name. The specifier can appear anywhere in the file name. For
example, the following value for Filename, C:\work\file_<%%%>.dat creates file
names with the following pattern:
file_001.dat
file_002.dat
file_003.dat

The last file name of this series is file_999.dat. If the function is still logging data
when the last file name reaches its maximum size, the function overwrites the first file
name in the series.

A fully qualified file name can have a maximum of 260 characters: The file part can have
at most 12 characters: eight for the file name, one for the period, and at most three for
the file extension. A file name longer than eight characters is truncated to six characters
followed by '~1'.

Programmatic Use
Block Parameter: filename

Mode — File access table update policy
Lazy (default) | Commit

 Scope

31-27

Both Lazy and Commit mode open a file, write signal data to the file, then close that file
at the end of the session. The difference is in when the block updates the file access table
(FAT) entry for the file.

• Lazy — The block updates the FAT entry only when the file is closed and not during
each file write operation. This mode is faster than Commit mode. However, if the
system crashes before the file is closed, the file system does not know the actual file
size (the file contents, however, are intact).

• Commit — The block updates the FAT entry for the file with each file write operation.
This mode is slower than Lazy mode, but the file system maintains the actual file size.

You cannot read a file that was written during real-time execution until execution has
completed.

Programmatic Use
Block Parameter: mode

WriteSize — Size, in bytes, of data chunks that the block writes
512 (default) | unsigned integer

This parameter specifies that a memory buffer, of length Number of samples, writes
data to the file in WriteSize chunks. By default, this parameter is 512 bytes, which is the
typical disk sector size. Using a block size that is the same as the disk sector size provides
better performance.

Programmatic Use
Block Parameter: writesize

AutoRestart — Restart capture after acquisition
'off' (default) | 'on'

The AutoRestart setting works with the Number of samples parameter.

• Autorestart is on — When the scope triggers, the scope starts collecting data into a
memory buffer. A background task examines the buffer and writes data to the disk
continuously, appending new data to the end of the file. When the scope reaches the
number of samples that you specified, it starts collecting data again, overwriting the
memory buffer. If the background task cannot keep pace with data collection, data can
be lost.

• Autorestart is off — When the scope triggers, the scope starts collecting data into a
memory buffer. It stops when it has collected the number of samples that you

31 Target Management, Display, and Logging Blocks

31-28

specified. A background task examines the buffer and writes data to the disk
continuously, appending the new data to the end of the file.

Selecting this parameter makes visible the Dynamic file name enabled and Max file
size in bytes (multiple of WriteSize) parameters.

Programmatic Use
Block Parameter: autorestart

Dynamic file name enabled — Dynamically create multiple log files
'off' (default) | 'on'

Select this check box to enable the ability dynamically to create multiple log files for file
scopes.

To enable this parameter, select the AutoRestart check box. When you enable Dynamic
file name enabled, configure Filename to create incrementally numbered file names for
the multiple log files. Failure to do so causes an error when you try to start the scope.

You can enable the creation of up to 99999999 files (<%%%%%%%%>.dat). The length of a
file name, including the specifier, cannot exceed eight characters.

This parameter becomes visible when you select the AutoRestart parameter.

Programmatic Use
Block Parameter: dynamicfilemode

Max file size in bytes (multiple of WriteSize) — Maximum size of
output file
536870912 (default) | integer

When the log file reaches Max file size in bytes (multiple of WriteSize) in size, the
software creates the next numbered file name in the series. It continues logging data to
that file, up until the highest log file number you have specified. If the software cannot
create additional log files, it overwrites the first log file.

Dependency

This parameter becomes visible when you select the AutoRestart parameter.

Programmatic Use
Block Parameter: maxwritefilesize

 Scope

31-29

See Also

Topics
“Signal Tracing Basics”
“Simulink Real-Time Scope Usage”
“Target Scope Usage”
“Host Scope Usage”
“File Scope Usage”
“Troubleshoot Signals Not Accessible by Name”
“File System Basics”
“Configure Real-Time Target Scope Blocks”
“Configure Real-Time Host Scope Blocks”
“Configure Real-Time File Scope Blocks”

Introduced in R2014a

31 Target Management, Display, and Logging Blocks

31-30

Set Overload Counter
Set current CPU overload count

Library
Simulink Real-Time Library for Execution Parameters

Description
This block enables you to adjust the CPU overload count.

Block Parameters
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

See Also
Get Overload Counter

“CPU Overload Options”

Introduced in R2014a

 Set Overload Counter

31-31

Task Execution Time
Task execution time (TET), in seconds

Library
Simulink Real-Time Library for Execution Parameters

Description
This block outputs the task execution time (TET) in seconds.

To visualize the TET while your real-time application is running, connect the output of this
block to a Simulink Real-Time Scope block.

Task execution time (TET) measures how long it takes the kernel to run for one base-rate
time step. For a multirate model, use the profiler to find out what the execution time is for
each rate.

Block Parameters
Sample time

Enter the base sample time or a multiple of the base sample time (-1 means sample
time is inherited).

Introduced in R2014a

31 Target Management, Display, and Logging Blocks

31-32

Time Stamp Delta
Time stamp delta
Library: Simulink Real-Time / Target Management / Target

Information

Description
This block takes as input two uint32 vectors of length 2. Two separate Elapsed Time
blocks can supply each vector. The output is a scalar double that contains the difference
between the two timestamps, in nanoseconds.

To compute the difference in nanoseconds between two vector time values, pass both time
values to the Time Stamp Delta block. To convert a single time value to nanoseconds, pass
one time value to a Time Stamp Delta block and ground the other input.

Ports

Input
t1 — First target computer time
[00000000 FFFFFFFF]

The time value is in an internal format.
Data Types: [uint32 uint32]

t2 — Second target computer time
[00000000 FFFFFFFF]

The time value is in an internal format.
Data Types: [uint32 uint32]

 Time Stamp Delta

31-33

Output Arguments
Delta — Difference between time values
double

Difference in nanoseconds between t1 and t2.

See Also
Elapsed Time

Introduced in R2006a

31 Target Management, Display, and Logging Blocks

31-34

To Target
Send data to target computer

Library
Simulink Real-Time Library for Displays and Logging

Description
This block behaves as a sink. The main purpose of this block is to write a new value to a
specific parameter on the real-time application.

You can use the function SimulinkRealTime.utils.createInstrumentationModel
to create an instrumentation model using the To Target and From Target blocks.

The To Target block runs as a non-real-time Simulink block on the development computer.
It is asynchronous to the real-time model running on the target computer. If the To Target
block receives continuously changing input, two parameter updates can be sent to the
target computer before the next sample time of the real-time application. In this case, the
real-time application only uses the last parameter value received. Conversely, it is also
possible for one or more sample times to elapse on the target computer before the To
Target block sends the next parameter value.

In either case, the To Target block only sends parameter values to the target computer
when there is a change (for example, the input of the To Target block changes).

Note The use of To Target blocks requires a connection between the development and
target computers. Without a connection, operations such as opening a model or copying
these blocks take longer than normal.

 To Target

31-35

Some notes on the To Target block behavior:

• To highlight the Simulink model block referenced by a To Target block, double-click
the block.

• If the To Target block has not yet been configured, double-clicking the block does
nothing.

• To edit the To Target block parameters, right-click the block and select Mask
Parameters.

Block Parameters
Target application name

The function SimulinkRealTime.utils.createInstrumentationModel
automatically enters a name entry for this parameter. It is the same name as the
Simulink model that Simulink Real-Time uses to build the real-time application.

Path to block in real-time application
The function SimulinkRealTime.utils.createInstrumentationModel
automatically enters an entry for this parameter and uses it to access the block
identifier.

Parameter name
The function SimulinkRealTime.utils.createInstrumentationModel
automatically determines the entry for this parameter and enters it. Note that the
parameter name might not match the label name for that parameter in the Block
Parameters dialog box. For example, the label name for a gain block is Constant
value, but the parameter name is Value.

Use default target PC
Selecting this option directs Simulink Coder to build and download the real-time
application to the default target computer. This assumes that you configured a default
target computer through the Simulink Real-Time Explorer (see “PCI Bus Ethernet
Setup” if you have not). By default, this check box is selected.

Specify target name
If you deselect the Use default target PC check box, this field is displayed. Enter the
name of the configured target computer.

31 Target Management, Display, and Logging Blocks

31-36

See Also
SimulinkRealTime.utils.createInstrumentationModel

Topics
“Creating a Custom Graphical Interface”

Introduced in R2014a

 To Target

31-37

